dppo/cfg/gym/finetune/halfcheetah-v2/ppo_gaussian_mlp.yaml
2024-09-03 21:03:27 -04:00

94 lines
2.1 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_ppo_gaussian_agent.TrainPPOGaussianAgent
name: ${env_name}_nopre_ppo_gaussian_mlp_ta${horizon_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}
normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz
device: cuda:0
env_name: halfcheetah-medium-v2
obs_dim: 17
action_dim: 6
transition_dim: ${action_dim}
cond_steps: 1
horizon_steps: 1
act_steps: 1
env:
n_envs: 10
name: ${env_name}
max_episode_steps: 1000
reset_at_iteration: False
save_video: False
best_reward_threshold_for_success: 3
wrappers:
mujoco_locomotion_lowdim:
normalization_path: ${normalization_path}
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: gym-${env_name}-scratch
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 1000
n_critic_warmup_itr: 0
n_steps: 1000
gamma: 0.99
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-4
critic_lr: 1e-3
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: 10000
warmup_steps: 10
min_lr: 1e-3
save_model_freq: 100
val_freq: 10
render:
freq: 1
num: 0
# PPO specific
reward_scale_running: True
reward_scale_const: 1.0
gae_lambda: 0.95
batch_size: 1000
update_epochs: 10
vf_coef: 0.5
target_kl: 1
model:
_target_: model.rl.gaussian_ppo.PPO_Gaussian
clip_ploss_coef: 0.1
randn_clip_value: 3
#
actor:
_target_: model.common.mlp_gaussian.Gaussian_MLP
mlp_dims: [512, 512, 512]
activation_type: ReLU
residual_style: True
cond_dim: ${obs_dim}
horizon_steps: ${horizon_steps}
transition_dim: ${transition_dim}
critic:
_target_: model.common.critic.CriticObs
obs_dim: ${obs_dim}
mlp_dims: [256, 256, 256]
activation_type: Mish
residual_style: True
horizon_steps: ${horizon_steps}
cond_steps: ${cond_steps}
device: ${device}