dppo/cfg/robomimic/finetune/transport/ft_ppo_diffusion_mlp.yaml
2024-09-03 21:03:27 -04:00

117 lines
3.1 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_ppo_diffusion_agent.TrainPPODiffusionAgent
name: ${env_name}_ft_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}_tdf${ft_denoising_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
base_policy_path: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/transport/transport_pre_diffusion_mlp_ta8_td20/2024-07-08_11-18-59/checkpoint/state_8000.pt
robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}.json
normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/normalization.npz
seed: 42
device: cuda:0
env_name: transport
obs_dim: 59
action_dim: 14
transition_dim: ${action_dim}
denoising_steps: 20
ft_denoising_steps: 10
cond_steps: 1
horizon_steps: 8
act_steps: 8
env:
n_envs: 50
name: ${env_name}
best_reward_threshold_for_success: 1
max_episode_steps: 800
save_video: false
wrappers:
robomimic_lowdim:
normalization_path: ${normalization_path}
low_dim_keys: ['robot0_eef_pos',
'robot0_eef_quat',
'robot0_gripper_qpos',
"robot1_eef_pos",
"robot1_eef_quat",
"robot1_gripper_qpos",
'object'] # same order of preprocessed observations
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: robomimic-${env_name}-finetune
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 1000
n_critic_warmup_itr: 2
n_steps: 400
gamma: 0.999
actor_lr: 1e-5
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-6
critic_lr: 1e-3
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-3
save_model_freq: 100
val_freq: 10
render:
freq: 1
num: 0
# PPO specific
reward_scale_running: True
reward_scale_const: 1.0
gae_lambda: 0.95
batch_size: 10000
update_epochs: 8
vf_coef: 0.5
target_kl: 1
model:
_target_: model.diffusion.diffusion_ppo.PPODiffusion
# HP to tune
gamma_denoising: 0.99
clip_ploss_coef: 0.01
clip_ploss_coef_base: 0.001
clip_ploss_coef_rate: 3
randn_clip_value: 3
min_sampling_denoising_std: 0.08
min_logprob_denoising_std: 0.1
#
network_path: ${base_policy_path}
actor:
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
time_dim: 32
mlp_dims: [1024, 1024, 1024]
residual_style: True
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
transition_dim: ${transition_dim}
critic:
_target_: model.common.critic.CriticObs
obs_dim: ${obs_dim}
mlp_dims: [256, 256, 256]
activation_type: Mish
residual_style: True
ft_denoising_steps: ${ft_denoising_steps}
transition_dim: ${transition_dim}
horizon_steps: ${horizon_steps}
obs_dim: ${obs_dim}
action_dim: ${action_dim}
cond_steps: ${cond_steps}
denoising_steps: ${denoising_steps}
device: ${device}