dppo/env/gym_utils/wrapper/multi_step.py
2024-09-03 21:03:27 -04:00

284 lines
8.4 KiB
Python

"""
Multi-step wrapper. Allow executing multiple environmnt steps. Returns stacked observation and optionally stacked previous action.
Modified from https://github.com/real-stanford/diffusion_policy/blob/main/diffusion_policy/gym_util/multistep_wrapper.py
"""
import gym
from typing import Optional
from gym import spaces
import numpy as np
from collections import defaultdict, deque
# import dill
def stack_repeated(x, n):
return np.repeat(np.expand_dims(x, axis=0), n, axis=0)
def repeated_box(box_space, n):
return spaces.Box(
low=stack_repeated(box_space.low, n),
high=stack_repeated(box_space.high, n),
shape=(n,) + box_space.shape,
dtype=box_space.dtype,
)
def repeated_space(space, n):
if isinstance(space, spaces.Box):
return repeated_box(space, n)
elif isinstance(space, spaces.Dict):
result_space = spaces.Dict()
for key, value in space.items():
result_space[key] = repeated_space(value, n)
return result_space
else:
raise RuntimeError(f"Unsupported space type {type(space)}")
def take_last_n(x, n):
x = list(x)
n = min(len(x), n)
return np.array(x[-n:])
def dict_take_last_n(x, n):
result = dict()
for key, value in x.items():
result[key] = take_last_n(value, n)
return result
def aggregate(data, method="max"):
if method == "max":
# equivalent to any
return np.max(data)
elif method == "min":
# equivalent to all
return np.min(data)
elif method == "mean":
return np.mean(data)
elif method == "sum":
return np.sum(data)
else:
raise NotImplementedError()
def stack_last_n_obs(all_obs, n_steps):
"""Apply padding"""
assert len(all_obs) > 0
all_obs = list(all_obs)
result = np.zeros((n_steps,) + all_obs[-1].shape, dtype=all_obs[-1].dtype)
start_idx = -min(n_steps, len(all_obs))
result[start_idx:] = np.array(all_obs[start_idx:])
if n_steps > len(all_obs):
# pad
result[:start_idx] = result[start_idx]
return result
class MultiStep(gym.Wrapper):
def __init__(
self,
env,
n_obs_steps=1,
n_action_steps=1,
max_episode_steps=None,
reward_agg_method="sum", # never use other types
prev_action=True,
reset_within_step=False,
pass_full_observations=False,
verbose=False,
**kwargs,
):
super().__init__(env)
self._single_action_space = env.action_space
self._action_space = repeated_space(env.action_space, n_action_steps)
self._observation_space = repeated_space(env.observation_space, n_obs_steps)
self.max_episode_steps = max_episode_steps
self.n_obs_steps = n_obs_steps
self.n_action_steps = n_action_steps
self.reward_agg_method = reward_agg_method
self.prev_action = prev_action
self.reset_within_step = reset_within_step
self.pass_full_observations = pass_full_observations
self.verbose = verbose
def reset(
self,
seed: Optional[int] = None,
return_info: bool = False,
options: dict = {},
):
"""Resets the environment."""
obs = self.env.reset(
seed=seed,
options=options,
return_info=return_info,
)
self.obs = deque([obs], maxlen=max(self.n_obs_steps + 1, self.n_action_steps))
if self.prev_action:
self.action = deque(
[self._single_action_space.sample()], maxlen=self.n_obs_steps
)
self.reward = list()
self.done = list()
self.info = defaultdict(lambda: deque(maxlen=self.n_obs_steps + 1))
obs = self._get_obs(self.n_obs_steps)
self.cnt = 0
return obs
def step(self, action):
"""
actions: (n_action_steps,) + action_shape
"""
if action.ndim == 1: # in case action_steps = 1
action = action[None]
for act_step, act in enumerate(action):
self.cnt += 1
if len(self.done) > 0 and self.done[-1]:
# termination
break
observation, reward, done, info = self.env.step(act)
self.obs.append(observation)
self.action.append(act)
self.reward.append(reward)
if (
self.max_episode_steps is not None
) and self.cnt >= self.max_episode_steps:
# truncation
done = True
self.done.append(done)
self._add_info(info)
observation = self._get_obs(self.n_obs_steps)
reward = aggregate(self.reward, self.reward_agg_method)
done = aggregate(self.done, "max")
info = dict_take_last_n(self.info, self.n_obs_steps)
if self.pass_full_observations: # right now this assume n_obs_steps = 1
info["full_obs"] = self._get_obs(act_step + 1)
# In mujoco case, done can happen within the loop above
if self.reset_within_step and self.done[-1]:
observation = (
self.reset()
) # TODO: arguments? this cannot handle video recording right now since needs to pass in options
self.verbose and print("Reset env within wrapper.")
# reset reward and done for next step
self.reward = list()
self.done = list()
return observation, reward, done, info
def _get_obs(self, n_steps=1):
"""
Output (n_steps,) + obs_shape
"""
assert len(self.obs) > 0
if isinstance(self.observation_space, spaces.Box):
return stack_last_n_obs(self.obs, n_steps)
elif isinstance(self.observation_space, spaces.Dict):
result = dict()
for key in self.observation_space.keys():
result[key] = stack_last_n_obs([obs[key] for obs in self.obs], n_steps)
return result
else:
raise RuntimeError("Unsupported space type")
def get_prev_action(self, n_steps=None):
if n_steps is None:
n_steps = self.n_obs_steps - 1 # exclude current step
assert len(self.action) > 0
return stack_last_n_obs(self.action, n_steps)
def _add_info(self, info):
for key, value in info.items():
self.info[key].append(value)
def render(self, **kwargs):
"""Not the best design"""
return self.env.render(**kwargs)
# def get_rewards(self):
# return self.reward
# def get_attr(self, name):
# return getattr(self, name)
# def run_dill_function(self, dill_fn):
# fn = dill.loads(dill_fn)
# return fn(self)
# def get_infos(self):
# result = dict()
# for k, v in self.info.items():
# result[k] = list(v)
# return result
if __name__ == "__main__":
import os
from omegaconf import OmegaConf
import json
os.environ["MUJOCO_GL"] = "egl"
cfg = OmegaConf.load("cfg/robomimic/finetune/can/ft_ppo_diffusion_mlp_img.yaml")
shape_meta = cfg["shape_meta"]
import robomimic.utils.env_utils as EnvUtils
import robomimic.utils.obs_utils as ObsUtils
import matplotlib.pyplot as plt
from env.gym_utils.wrapper.robomimic_image import RobomimicImageWrapper
wrappers = cfg.env.wrappers
obs_modality_dict = {
"low_dim": (
wrappers.robomimic_image.low_dim_keys
if "robomimic_image" in wrappers
else wrappers.robomimic_lowdim.low_dim_keys
),
"rgb": (
wrappers.robomimic_image.image_keys
if "robomimic_image" in wrappers
else None
),
}
if obs_modality_dict["rgb"] is None:
obs_modality_dict.pop("rgb")
ObsUtils.initialize_obs_modality_mapping_from_dict(obs_modality_dict)
with open(cfg.robomimic_env_cfg_path, "r") as f:
env_meta = json.load(f)
env = EnvUtils.create_env_from_metadata(
env_meta=env_meta,
render=False,
render_offscreen=False,
use_image_obs=True,
)
env.env.hard_reset = False
wrapper = MultiStep(
env=RobomimicImageWrapper(
env=env,
shape_meta=shape_meta,
image_keys=["robot0_eye_in_hand_image"],
),
n_obs_steps=1,
n_action_steps=1,
)
wrapper.seed(0)
obs = wrapper.reset()
print(obs.keys())
img = wrapper.render()
wrapper.close()
plt.imshow(img)
plt.savefig("test.png")