214 lines
6.3 KiB
Python
214 lines
6.3 KiB
Python
"""
|
|
Abstract SDE classes, Reverse SDE, and VE/VP SDEs.
|
|
|
|
From https://github.com/yang-song/score_sde_pytorch
|
|
|
|
"""
|
|
|
|
import abc
|
|
import torch
|
|
import numpy as np
|
|
|
|
|
|
def get_score_fn(
|
|
sde,
|
|
model,
|
|
continuous=False,
|
|
predict_epsilon=False,
|
|
):
|
|
"""Wraps `score_fn` so that the model output corresponds to a real time-dependent score function.
|
|
|
|
Args:
|
|
sde: An `sde_lib.SDE` object that represents the forward SDE.
|
|
model: A score model.
|
|
continuous: If `True`, the score-based model is expected to directly take continuous time steps.
|
|
|
|
Returns:
|
|
A score function.
|
|
"""
|
|
|
|
def score_fn(x, t, **kwargs):
|
|
"""
|
|
Use [:, None, None] to add two dimensions (horizon and transition)
|
|
"""
|
|
score = model(x, t, **kwargs)
|
|
|
|
if not predict_epsilon: # get epsilon first from predicted mu
|
|
score = (
|
|
-(x - score * sde.sqrt_alphas[t.long()][:, None, None])
|
|
/ sde.discrete_betas[t.long()][:, None, None]
|
|
)
|
|
else:
|
|
std = sde.sqrt_1m_alpha_bar[t.long()]
|
|
score = -score / std[:, None, None]
|
|
return score
|
|
|
|
return score_fn
|
|
|
|
|
|
class SDE(abc.ABC):
|
|
"""SDE abstract class. Functions are designed for a mini-batch of inputs."""
|
|
|
|
def __init__(self, N):
|
|
"""Construct an SDE.
|
|
|
|
Args:
|
|
N: number of discretization time steps.
|
|
"""
|
|
super().__init__()
|
|
self.N = N
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def T(self):
|
|
"""End time of the SDE."""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def sde(self, x, t):
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def marginal_prob(self, x, t):
|
|
"""Parameters to determine the marginal distribution of the SDE, $p_t(x)$."""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def prior_sampling(self, shape):
|
|
"""Generate one sample from the prior distribution, $p_T(x)$."""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def prior_logp(self, z):
|
|
"""Compute log-density of the prior distribution.
|
|
|
|
Useful for computing the log-likelihood via probability flow ODE.
|
|
|
|
Args:
|
|
z: latent code
|
|
Returns:
|
|
log probability density
|
|
"""
|
|
pass
|
|
|
|
def discretize(self, x, t):
|
|
"""Discretize the SDE in the form: x_{i+1} = x_i + f_i(x_i) + G_i z_i.
|
|
|
|
Useful for reverse diffusion sampling and probabiliy flow sampling.
|
|
Defaults to Euler-Maruyama discretization.
|
|
|
|
Args:
|
|
x: a torch tensor
|
|
t: a torch float representing the time step (from 0 to `self.T`)
|
|
|
|
Returns:
|
|
f, G
|
|
"""
|
|
dt = 1 / self.N
|
|
drift, diffusion = self.sde(x, t)
|
|
f = drift * dt
|
|
G = diffusion * torch.sqrt(torch.tensor(dt, device=t.device))
|
|
return f, G
|
|
|
|
def reverse(self, score_fn, probability_flow=False):
|
|
"""Create the reverse-time SDE/ODE.
|
|
|
|
Args:
|
|
score_fn: A time-dependent score-based model that takes x and t and returns the score.
|
|
probability_flow: If `True`, create the reverse-time ODE used for probability flow sampling.
|
|
"""
|
|
N = self.N
|
|
T = self.T
|
|
sde_fn = self.sde
|
|
discretize_fn = self.discretize
|
|
|
|
# Build the class for reverse-time SDE.
|
|
class RSDE(self.__class__):
|
|
def __init__(self):
|
|
self.N = N
|
|
self.probability_flow = probability_flow
|
|
|
|
@property
|
|
def T(self):
|
|
return T
|
|
|
|
def sde(self, x, t, **kwargs):
|
|
"""Create the drift and diffusion functions for the reverse SDE/ODE."""
|
|
drift, diffusion = sde_fn(x, t)
|
|
score = score_fn(x, t, **kwargs)
|
|
drift = drift - diffusion[:, None, None] ** 2 * score * (
|
|
0.5 if self.probability_flow else 1.0
|
|
)
|
|
# Set the diffusion function to zero for ODEs.
|
|
diffusion = 0.0 if self.probability_flow else diffusion
|
|
return drift, diffusion
|
|
|
|
def discretize(self, x, t):
|
|
"""Create discretized iteration rules for the reverse diffusion sampler."""
|
|
f, G = discretize_fn(x, t)
|
|
rev_f = f - G[:, None] ** 2 * score_fn(x, t) * (
|
|
0.5 if self.probability_flow else 1.0
|
|
)
|
|
rev_G = torch.zeros_like(G) if self.probability_flow else G
|
|
return rev_f, rev_G
|
|
|
|
return RSDE()
|
|
|
|
|
|
class VPSDE(SDE):
|
|
def __init__(self, N=1000):
|
|
"""Construct a Variance Preserving SDE.
|
|
|
|
Args:
|
|
beta_min: value of beta(0)
|
|
beta_max: value of beta(1)
|
|
N: number of discretization steps
|
|
"""
|
|
super().__init__(N)
|
|
|
|
def set_betas(self, betas, min_beta=0.01):
|
|
self.discrete_betas = betas.clamp(min=min_beta) # cosine schedule from our DDPM
|
|
self.alphas = 1.0 - self.discrete_betas
|
|
self.sqrt_alphas = torch.sqrt(self.alphas)
|
|
self.alphas_bar = torch.cumprod(self.alphas, axis=0)
|
|
self.sqrt_1m_alpha_bar = torch.sqrt(1 - self.alphas_bar)
|
|
|
|
@property
|
|
def T(self):
|
|
return 1
|
|
|
|
def sde(self, x, t):
|
|
# dx = - 1/2 beta(t) x dt + sqrt(beta(t)) dW
|
|
beta_t = self.discrete_betas[t]
|
|
drift = -0.5 * beta_t[:, None, None] * x
|
|
diffusion = torch.sqrt(beta_t)
|
|
return drift, diffusion
|
|
|
|
def marginal_prob(self, x, t):
|
|
raise NotImplementedError
|
|
# log_mean_coeff = (
|
|
# -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
|
# )
|
|
# mean = torch.exp(log_mean_coeff[:, None, None]) * x
|
|
# std = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff))
|
|
# return mean, std
|
|
|
|
def prior_sampling(self, shape):
|
|
return torch.randn(*shape)
|
|
|
|
def prior_logp(self, z):
|
|
shape = z.shape
|
|
N = np.prod(shape[1:])
|
|
logps = -N / 2.0 * np.log(2 * np.pi) - torch.sum(z**2, dim=(1, 2)) / 2.0
|
|
return logps
|
|
|
|
def discretize(self, x, t):
|
|
"""DDPM discretization."""
|
|
timestep = (t * (self.N - 1) / self.T).long()
|
|
beta = self.discrete_betas.to(x.device)[timestep]
|
|
alpha = self.alphas.to(x.device)[timestep]
|
|
sqrt_beta = torch.sqrt(beta)
|
|
f = torch.sqrt(alpha)[:, None, None] * x - x
|
|
G = sqrt_beta
|
|
return f, G
|