* v0.5 (#9) * update idql configs * update awr configs * update dipo configs * update qsm configs * update dqm configs * update project version to 0.5.0
74 lines
2.2 KiB
Python
74 lines
2.2 KiB
Python
"""
|
|
Environment wrapper for Gym environments (MuJoCo locomotion tasks) with state observations.
|
|
|
|
For consistency, we will use Dict{} for the observation space, with the key "state" for the state observation.
|
|
"""
|
|
|
|
import numpy as np
|
|
import gym
|
|
from gym import spaces
|
|
|
|
|
|
class MujocoLocomotionLowdimWrapper(gym.Env):
|
|
def __init__(
|
|
self,
|
|
env,
|
|
normalization_path,
|
|
):
|
|
self.env = env
|
|
|
|
# setup spaces
|
|
self.action_space = env.action_space
|
|
normalization = np.load(normalization_path)
|
|
self.obs_min = normalization["obs_min"]
|
|
self.obs_max = normalization["obs_max"]
|
|
self.action_min = normalization["action_min"]
|
|
self.action_max = normalization["action_max"]
|
|
|
|
self.observation_space = spaces.Dict()
|
|
obs_example = self.env.reset()
|
|
low = np.full_like(obs_example, fill_value=-1)
|
|
high = np.full_like(obs_example, fill_value=1)
|
|
self.observation_space["state"] = spaces.Box(
|
|
low=low,
|
|
high=high,
|
|
shape=low.shape,
|
|
dtype=low.dtype,
|
|
)
|
|
|
|
def seed(self, seed=None):
|
|
if seed is not None:
|
|
np.random.seed(seed=seed)
|
|
else:
|
|
np.random.seed()
|
|
|
|
def reset(self, **kwargs):
|
|
"""Ignore passed-in arguments like seed"""
|
|
options = kwargs.get("options", {})
|
|
new_seed = options.get("seed", None)
|
|
if new_seed is not None:
|
|
self.seed(seed=new_seed)
|
|
raw_obs = self.env.reset()
|
|
|
|
# normalize
|
|
obs = self.normalize_obs(raw_obs)
|
|
return {"state": obs}
|
|
|
|
def normalize_obs(self, obs):
|
|
return 2 * ((obs - self.obs_min) / (self.obs_max - self.obs_min + 1e-6) - 0.5)
|
|
|
|
def unnormalize_action(self, action):
|
|
action = (action + 1) / 2 # [-1, 1] -> [0, 1]
|
|
return action * (self.action_max - self.action_min) + self.action_min
|
|
|
|
def step(self, action):
|
|
raw_action = self.unnormalize_action(action)
|
|
raw_obs, reward, done, info = self.env.step(raw_action)
|
|
|
|
# normalize
|
|
obs = self.normalize_obs(raw_obs)
|
|
return {"state": obs}, reward, done, info
|
|
|
|
def render(self, **kwargs):
|
|
return self.env.render()
|