dppo/model/diffusion/diffusion_eval_ft.py

136 lines
5.0 KiB
Python

"""
For evaluating RL fine-tuned diffusion policy
Account for frozen base policy for early denoising steps and fine-tuned policy for later denoising steps
"""
import copy
import logging
import torch
log = logging.getLogger(__name__)
from model.diffusion.diffusion import DiffusionModel
from model.diffusion.sampling import extract
class DiffusionEvalFT(DiffusionModel):
def __init__(
self,
use_ddim,
ft_denoising_steps,
network_path,
**kwargs,
):
# do not let base class load model
super().__init__(use_ddim=use_ddim, network_path=None, **kwargs)
self.ft_denoising_steps = ft_denoising_steps
checkpoint = torch.load(
network_path, map_location=self.device, weights_only=True
) # 'network.mlp_mean...', 'actor.mlp_mean...', 'actor_ft.mlp_mean...'
# Set up base model --- techncally not needed if all denoising steps are fine-tuned
self.actor = self.network
base_weights = {
key.split("actor.")[1]: checkpoint["model"][key]
for key in checkpoint["model"]
if "actor." in key
}
self.actor.load_state_dict(base_weights, strict=True)
logging.info("Loaded base policy weights from %s", network_path)
# Always set up fine-tuned model
self.actor_ft = copy.deepcopy(self.network)
ft_weights = {
key.split("actor_ft.")[1]: checkpoint["model"][key]
for key in checkpoint["model"]
if "actor_ft." in key
}
self.actor_ft.load_state_dict(ft_weights, strict=True)
logging.info("Loaded fine-tuned policy weights from %s", network_path)
# override
def p_mean_var(
self,
x,
t,
cond,
index=None,
deterministic=False,
):
noise = self.actor(x, t, cond=cond)
if self.use_ddim:
ft_indices = torch.where(
index >= (self.ddim_steps - self.ft_denoising_steps)
)[0]
else:
ft_indices = torch.where(t < self.ft_denoising_steps)[0]
# overwrite noise for fine-tuning steps
if len(ft_indices) > 0:
cond_ft = {key: cond[key][ft_indices] for key in cond}
noise_ft = self.actor_ft(x[ft_indices], t[ft_indices], cond=cond_ft)
noise[ft_indices] = noise_ft
# Predict x_0
if self.predict_epsilon:
if self.use_ddim:
"""
x₀ = (xₜ - √ (1-αₜ) ε )/ √ αₜ
"""
alpha = extract(self.ddim_alphas, index, x.shape)
alpha_prev = extract(self.ddim_alphas_prev, index, x.shape)
sqrt_one_minus_alpha = extract(
self.ddim_sqrt_one_minus_alphas, index, x.shape
)
x_recon = (x - sqrt_one_minus_alpha * noise) / (alpha**0.5)
else:
"""
x₀ = √ 1\α̅ₜ xₜ - √ 1\α̅ₜ-1 ε
"""
x_recon = (
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
- extract(self.sqrt_recipm1_alphas_cumprod, t, x.shape) * noise
)
else: # directly predicting x₀
x_recon = noise
if self.denoised_clip_value is not None:
x_recon.clamp_(-self.denoised_clip_value, self.denoised_clip_value)
if self.use_ddim:
# re-calculate noise based on clamped x_recon - default to false in HF, but let's use it here
noise = (x - alpha ** (0.5) * x_recon) / sqrt_one_minus_alpha
# Clip epsilon for numerical stability in policy gradient - not sure if this is helpful yet, but the value can be huge sometimes. This has no effect if DDPM is used
if self.use_ddim and self.eps_clip_value is not None:
noise.clamp_(-self.eps_clip_value, self.eps_clip_value)
# Get mu
if self.use_ddim:
"""
μ = √ αₜ₋₁ x₀ + √(1-αₜ₋₁ - σₜ²) ε
"""
if deterministic:
etas = torch.zeros((x.shape[0], 1, 1)).to(x.device)
else:
etas = self.eta(cond).unsqueeze(1) # B x 1 x (Da or 1)
sigma = (
etas
* ((1 - alpha_prev) / (1 - alpha) * (1 - alpha / alpha_prev)) ** 0.5
).clamp_(min=1e-10)
dir_xt_coef = (1.0 - alpha_prev - sigma**2).clamp_(min=0).sqrt()
mu = (alpha_prev**0.5) * x_recon + dir_xt_coef * noise
var = sigma**2
logvar = torch.log(var)
else:
"""
μₜ = β̃ₜ √ α̅ₜ₋₁/(1-α̅ₜ)x₀ + √ αₜ (1-α̅ₜ₋₁)/(1-α̅ₜ)xₜ
"""
mu = (
extract(self.ddpm_mu_coef1, t, x.shape) * x_recon
+ extract(self.ddpm_mu_coef2, t, x.shape) * x
)
logvar = extract(self.ddpm_logvar_clipped, t, x.shape)
return mu, logvar