dppo/agent/pretrain/train_diffusion_agent.py

86 lines
2.6 KiB
Python

"""
Pre-training diffusion policy
"""
import logging
import wandb
import numpy as np
log = logging.getLogger(__name__)
from util.timer import Timer
from agent.pretrain.train_agent import PreTrainAgent, batch_to_device
class TrainDiffusionAgent(PreTrainAgent):
def __init__(self, cfg):
super().__init__(cfg)
def run(self):
timer = Timer()
self.epoch = 1
cnt_batch = 0
for _ in range(self.n_epochs):
# train
loss_train_epoch = []
for batch_train in self.dataloader_train:
if self.dataset_train.device == "cpu":
batch_train = batch_to_device(batch_train)
self.model.train()
loss_train = self.model.loss(*batch_train)
loss_train.backward()
loss_train_epoch.append(loss_train.item())
self.optimizer.step()
self.optimizer.zero_grad()
# update ema
if cnt_batch % self.update_ema_freq == 0:
self.step_ema()
cnt_batch += 1
loss_train = np.mean(loss_train_epoch)
# validate
loss_val_epoch = []
if self.dataloader_val is not None and self.epoch % self.val_freq == 0:
self.model.eval()
for batch_val in self.dataloader_val:
if self.dataset_val.device == "cpu":
batch_val = batch_to_device(batch_val)
loss_val, infos_val = self.model.loss(*batch_val)
loss_val_epoch.append(loss_val.item())
self.model.train()
loss_val = np.mean(loss_val_epoch) if len(loss_val_epoch) > 0 else None
# update lr
self.lr_scheduler.step()
# save model
if self.epoch % self.save_model_freq == 0 or self.epoch == self.n_epochs:
self.save_model()
# log loss
if self.epoch % self.log_freq == 0:
log.info(
f"{self.epoch}: train loss {loss_train:8.4f} | t:{timer():8.4f}"
)
if self.use_wandb:
if loss_val is not None:
wandb.log(
{"loss - val": loss_val}, step=self.epoch, commit=False
)
wandb.log(
{
"loss - train": loss_train,
},
step=self.epoch,
commit=True,
)
# count
self.epoch += 1