dppo/model/diffusion/diffusion_vpg.py
Allen Z. Ren dc8e0c9edc
v0.6 (#18)
* Sampling over both env and denoising steps in DPPO updates (#13)

* sample one from each chain

* full random sampling

* Add Proficient Human (PH) Configs and Pipeline (#16)

* fix missing cfg

* add ph config

* fix how terminated flags are added to buffer in ibrl

* add ph config

* offline calql for 1M gradient updates

* bug fix: number of calql online gradient steps is the number of new transitions collected

* add sample config for DPPO with ta=1

* Sampling over both env and denoising steps in DPPO updates (#13)

* sample one from each chain

* full random sampling

* fix diffusion loss when predicting initial noise

* fix dppo inds

* fix typo

* remove print statement

---------

Co-authored-by: Justin M. Lidard <jlidard@neuronic.cs.princeton.edu>
Co-authored-by: allenzren <allen.ren@princeton.edu>

* update robomimic configs

* better calql formulation

* optimize calql and ibrl training

* optimize data transfer in ppo agents

* add kitchen configs

* re-organize config folders, rerun calql and rlpd

* add scratch gym locomotion configs

* add kitchen installation dependencies

* use truncated for termination in furniture env

* update furniture and gym configs

* update README and dependencies with kitchen

* add url for new data and checkpoints

* update demo RL configs

* update batch sizes for furniture unet configs

* raise error about dropout in residual mlp

* fix observation bug in bc loss

---------

Co-authored-by: Justin Lidard <60638575+jlidard@users.noreply.github.com>
Co-authored-by: Justin M. Lidard <jlidard@neuronic.cs.princeton.edu>
2024-10-30 19:58:06 -04:00

503 lines
18 KiB
Python

"""
Policy gradient with diffusion policy. VPG: vanilla policy gradient
K: number of denoising steps
To: observation sequence length
Ta: action chunk size
Do: observation dimension
Da: action dimension
C: image channels
H, W: image height and width
"""
import copy
import torch
import logging
log = logging.getLogger(__name__)
import torch.nn.functional as F
from model.diffusion.diffusion import DiffusionModel, Sample
from model.diffusion.sampling import make_timesteps, extract
from torch.distributions import Normal
class VPGDiffusion(DiffusionModel):
def __init__(
self,
actor,
critic,
ft_denoising_steps,
ft_denoising_steps_d=0,
ft_denoising_steps_t=0,
network_path=None,
# modifying denoising schedule
min_sampling_denoising_std=0.1,
min_logprob_denoising_std=0.1,
# eta in DDIM
eta=None,
learn_eta=False,
**kwargs,
):
super().__init__(
network=actor,
network_path=network_path,
**kwargs,
)
assert ft_denoising_steps <= self.denoising_steps
assert ft_denoising_steps <= self.ddim_steps if self.use_ddim else True
assert not (learn_eta and not self.use_ddim), "Cannot learn eta with DDPM."
# Number of denoising steps to use with fine-tuned model. Thus denoising_step - ft_denoising_steps is the number of denoising steps to use with original model.
self.ft_denoising_steps = ft_denoising_steps
self.ft_denoising_steps_d = ft_denoising_steps_d # annealing step size
self.ft_denoising_steps_t = ft_denoising_steps_t # annealing interval
self.ft_denoising_steps_cnt = 0
# Minimum std used in denoising process when sampling action - helps exploration
self.min_sampling_denoising_std = min_sampling_denoising_std
# Minimum std used in calculating denoising logprobs - for stability
self.min_logprob_denoising_std = min_logprob_denoising_std
# Learnable eta
self.learn_eta = learn_eta
if eta is not None:
self.eta = eta.to(self.device)
if not learn_eta:
for param in self.eta.parameters():
param.requires_grad = False
logging.info("Turned off gradients for eta")
# Re-name network to actor
self.actor = self.network
# Make a copy of the original model
self.actor_ft = copy.deepcopy(self.actor)
logging.info("Cloned model for fine-tuning")
# Turn off gradients for original model
for param in self.actor.parameters():
param.requires_grad = False
logging.info("Turned off gradients of the pretrained network")
logging.info(
f"Number of finetuned parameters: {sum(p.numel() for p in self.actor_ft.parameters() if p.requires_grad)}"
)
# Value function
self.critic = critic.to(self.device)
if network_path is not None:
checkpoint = torch.load(
network_path, map_location=self.device, weights_only=True
)
if "ema" not in checkpoint: # load trained RL model
self.load_state_dict(checkpoint["model"], strict=False)
logging.info("Loaded critic from %s", network_path)
# ---------- Sampling ----------#
def step(self):
"""
Anneal min_sampling_denoising_std and fine-tuning denoising steps
Current configs do not apply annealing
"""
# anneal min_sampling_denoising_std
if type(self.min_sampling_denoising_std) is not float:
self.min_sampling_denoising_std.step()
# anneal denoising steps
self.ft_denoising_steps_cnt += 1
if (
self.ft_denoising_steps_d > 0
and self.ft_denoising_steps_t > 0
and self.ft_denoising_steps_cnt % self.ft_denoising_steps_t == 0
):
self.ft_denoising_steps = max(
0, self.ft_denoising_steps - self.ft_denoising_steps_d
)
# update actor
self.actor = self.actor_ft
self.actor_ft = copy.deepcopy(self.actor)
for param in self.actor.parameters():
param.requires_grad = False
logging.info(
f"Finished annealing fine-tuning denoising steps to {self.ft_denoising_steps}"
)
def get_min_sampling_denoising_std(self):
if type(self.min_sampling_denoising_std) is float:
return self.min_sampling_denoising_std
else:
return self.min_sampling_denoising_std()
# override
def p_mean_var(
self,
x,
t,
cond,
index=None,
use_base_policy=False,
deterministic=False,
):
noise = self.actor(x, t, cond=cond)
if self.use_ddim:
ft_indices = torch.where(
index >= (self.ddim_steps - self.ft_denoising_steps)
)[0]
else:
ft_indices = torch.where(t < self.ft_denoising_steps)[0]
# Use base policy to query expert model, e.g. for imitation loss
actor = self.actor if use_base_policy else self.actor_ft
# overwrite noise for fine-tuning steps
if len(ft_indices) > 0:
cond_ft = {key: cond[key][ft_indices] for key in cond}
noise_ft = actor(x[ft_indices], t[ft_indices], cond=cond_ft)
noise[ft_indices] = noise_ft
# Predict x_0
if self.predict_epsilon:
if self.use_ddim:
"""
x₀ = (xₜ - √ (1-αₜ) ε )/ √ αₜ
"""
alpha = extract(self.ddim_alphas, index, x.shape)
alpha_prev = extract(self.ddim_alphas_prev, index, x.shape)
sqrt_one_minus_alpha = extract(
self.ddim_sqrt_one_minus_alphas, index, x.shape
)
x_recon = (x - sqrt_one_minus_alpha * noise) / (alpha**0.5)
else:
"""
x₀ = √ 1\α̅ₜ xₜ - √ 1\α̅ₜ-1 ε
"""
x_recon = (
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
- extract(self.sqrt_recipm1_alphas_cumprod, t, x.shape) * noise
)
else: # directly predicting x₀
x_recon = noise
if self.denoised_clip_value is not None:
x_recon.clamp_(-self.denoised_clip_value, self.denoised_clip_value)
if self.use_ddim:
# re-calculate noise based on clamped x_recon - default to false in HF, but let's use it here
noise = (x - alpha ** (0.5) * x_recon) / sqrt_one_minus_alpha
# Clip epsilon for numerical stability in policy gradient - not sure if this is helpful yet, but the value can be huge sometimes. This has no effect if DDPM is used
if self.use_ddim and self.eps_clip_value is not None:
noise.clamp_(-self.eps_clip_value, self.eps_clip_value)
# Get mu
if self.use_ddim:
"""
μ = √ αₜ₋₁ x₀ + √(1-αₜ₋₁ - σₜ²) ε
"""
if deterministic:
etas = torch.zeros((x.shape[0], 1, 1)).to(x.device)
else:
etas = self.eta(cond).unsqueeze(1) # B x 1 x (Da or 1)
sigma = (
etas
* ((1 - alpha_prev) / (1 - alpha) * (1 - alpha / alpha_prev)) ** 0.5
).clamp_(min=1e-10)
dir_xt_coef = (1.0 - alpha_prev - sigma**2).clamp_(min=0).sqrt()
mu = (alpha_prev**0.5) * x_recon + dir_xt_coef * noise
var = sigma**2
logvar = torch.log(var)
else:
"""
μₜ = β̃ₜ √ α̅ₜ₋₁/(1-α̅ₜ)x₀ + √ αₜ (1-α̅ₜ₋₁)/(1-α̅ₜ)xₜ
"""
mu = (
extract(self.ddpm_mu_coef1, t, x.shape) * x_recon
+ extract(self.ddpm_mu_coef2, t, x.shape) * x
)
logvar = extract(self.ddpm_logvar_clipped, t, x.shape)
etas = torch.ones_like(mu).to(mu.device) # always one for DDPM
return mu, logvar, etas
# override
@torch.no_grad()
def forward(
self,
cond,
deterministic=False,
return_chain=True,
use_base_policy=False,
):
"""
Forward pass for sampling actions.
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
deterministic: If true, then std=0 with DDIM, or with DDPM, use normal schedule (instead of clipping at a higher value)
return_chain: whether to return the entire chain of denoised actions
use_base_policy: whether to use the frozen pre-trained policy instead
Return:
Sample: namedtuple with fields:
trajectories: (B, Ta, Da)
chain: (B, K + 1, Ta, Da)
"""
device = self.betas.device
sample_data = cond["state"] if "state" in cond else cond["rgb"]
B = len(sample_data)
# Get updated minimum sampling denoising std
min_sampling_denoising_std = self.get_min_sampling_denoising_std()
# Loop
x = torch.randn((B, self.horizon_steps, self.action_dim), device=device)
if self.use_ddim:
t_all = self.ddim_t
else:
t_all = list(reversed(range(self.denoising_steps)))
chain = [] if return_chain else None
if not self.use_ddim and self.ft_denoising_steps == self.denoising_steps:
chain.append(x)
if self.use_ddim and self.ft_denoising_steps == self.ddim_steps:
chain.append(x)
for i, t in enumerate(t_all):
t_b = make_timesteps(B, t, device)
index_b = make_timesteps(B, i, device)
mean, logvar, _ = self.p_mean_var(
x=x,
t=t_b,
cond=cond,
index=index_b,
use_base_policy=use_base_policy,
deterministic=deterministic,
)
std = torch.exp(0.5 * logvar)
# Determine noise level
if self.use_ddim:
if deterministic:
std = torch.zeros_like(std)
else:
std = torch.clip(std, min=min_sampling_denoising_std)
else:
if deterministic and t == 0:
std = torch.zeros_like(std)
elif deterministic: # still keep the original noise
std = torch.clip(std, min=1e-3)
else: # use higher minimum noise
std = torch.clip(std, min=min_sampling_denoising_std)
noise = torch.randn_like(x).clamp_(
-self.randn_clip_value, self.randn_clip_value
)
x = mean + std * noise
# clamp action at final step
if self.final_action_clip_value is not None and i == len(t_all) - 1:
x = torch.clamp(
x, -self.final_action_clip_value, self.final_action_clip_value
)
if return_chain:
if not self.use_ddim and t <= self.ft_denoising_steps:
chain.append(x)
elif self.use_ddim and i >= (
self.ddim_steps - self.ft_denoising_steps - 1
):
chain.append(x)
if return_chain:
chain = torch.stack(chain, dim=1)
return Sample(x, chain)
# ---------- RL training ----------#
def get_logprobs(
self,
cond,
chains,
get_ent: bool = False,
use_base_policy: bool = False,
):
"""
Calculating the logprobs of the entire chain of denoised actions.
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
chains: (B, K+1, Ta, Da)
get_ent: flag for returning entropy
use_base_policy: flag for using base policy
Returns:
logprobs: (B x K, Ta, Da)
entropy (if get_ent=True): (B x K, Ta)
"""
# Repeat cond for denoising_steps, flatten batch and time dimensions
cond = {
key: cond[key]
.unsqueeze(1)
.repeat(1, self.ft_denoising_steps, *(1,) * (cond[key].ndim - 1))
.flatten(start_dim=0, end_dim=1)
for key in cond
} # less memory usage than einops?
# Repeat t for batch dim, keep it 1-dim
if self.use_ddim:
t_single = self.ddim_t[-self.ft_denoising_steps :]
else:
t_single = torch.arange(
start=self.ft_denoising_steps - 1,
end=-1,
step=-1,
device=self.device,
)
# 4,3,2,1,0,4,3,2,1,0,...,4,3,2,1,0
t_all = t_single.repeat(chains.shape[0], 1).flatten()
if self.use_ddim:
indices_single = torch.arange(
start=self.ddim_steps - self.ft_denoising_steps,
end=self.ddim_steps,
device=self.device,
) # only used for DDIM
indices = indices_single.repeat(chains.shape[0])
else:
indices = None
# Split chains
chains_prev = chains[:, :-1]
chains_next = chains[:, 1:]
# Flatten first two dimensions
chains_prev = chains_prev.reshape(-1, self.horizon_steps, self.action_dim)
chains_next = chains_next.reshape(-1, self.horizon_steps, self.action_dim)
# Forward pass with previous chains
next_mean, logvar, eta = self.p_mean_var(
chains_prev,
t_all,
cond=cond,
index=indices,
use_base_policy=use_base_policy,
)
std = torch.exp(0.5 * logvar)
std = torch.clip(std, min=self.min_logprob_denoising_std)
dist = Normal(next_mean, std)
# Get logprobs with gaussian
log_prob = dist.log_prob(chains_next)
if get_ent:
return log_prob, eta
return log_prob
def get_logprobs_subsample(
self,
cond,
chains_prev,
chains_next,
denoising_inds,
get_ent: bool = False,
use_base_policy: bool = False,
):
"""
Calculating the logprobs of random samples of denoised chains.
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
chains: (B, K+1, Ta, Da)
get_ent: flag for returning entropy
use_base_policy: flag for using base policy
Returns:
logprobs: (B, Ta, Da)
entropy (if get_ent=True): (B, Ta)
denoising_indices: (B, )
"""
# Sample t for batch dim, keep it 1-dim
if self.use_ddim:
t_single = self.ddim_t[-self.ft_denoising_steps :]
else:
t_single = torch.arange(
start=self.ft_denoising_steps - 1,
end=-1,
step=-1,
device=self.device,
)
# 4,3,2,1,0,4,3,2,1,0,...,4,3,2,1,0
t_all = t_single[denoising_inds]
if self.use_ddim:
ddim_indices_single = torch.arange(
start=self.ddim_steps - self.ft_denoising_steps,
end=self.ddim_steps,
device=self.device,
) # only used for DDIM
ddim_indices = ddim_indices_single[denoising_inds]
else:
ddim_indices = None
# Forward pass with previous chains
next_mean, logvar, eta = self.p_mean_var(
chains_prev,
t_all,
cond=cond,
index=ddim_indices,
use_base_policy=use_base_policy,
)
std = torch.exp(0.5 * logvar)
std = torch.clip(std, min=self.min_logprob_denoising_std)
dist = Normal(next_mean, std)
# Get logprobs with gaussian
log_prob = dist.log_prob(chains_next)
if get_ent:
return log_prob, eta
return log_prob
def loss(self, cond, chains, reward):
"""
REINFORCE loss. Not used right now.
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
chains: (B, K+1, Ta, Da)
reward (to go): (b,)
"""
# Get advantage
with torch.no_grad():
value = self.critic(cond).squeeze()
advantage = reward - value
# Get logprobs for denoising steps from T-1 to 0
logprobs, eta = self.get_logprobs(cond, chains, get_ent=True)
# (n_steps x n_envs x K) x Ta x (Do+Da)
# Ignore obs dimension, and then sum over action dimension
logprobs = logprobs[:, :, : self.action_dim].sum(-1)
# -> (n_steps x n_envs x K) x Ta
# -> (n_steps x n_envs) x K x Ta
logprobs = logprobs.reshape((-1, self.denoising_steps, self.horizon_steps))
# Sum/avg over denoising steps
logprobs = logprobs.mean(-2) # -> (n_steps x n_envs) x Ta
# Sum/avg over horizon steps
logprobs = logprobs.mean(-1) # -> (n_steps x n_envs)
# Get REINFORCE loss
loss_actor = torch.mean(-logprobs * advantage)
# Train critic to predict state value
pred = self.critic(cond).squeeze()
loss_critic = F.mse_loss(pred, reward)
return loss_actor, loss_critic, eta