dppo/cfg/gym/finetune/kitchen-partial-v0/ibrl_mlp.yaml
Allen Z. Ren dc8e0c9edc
v0.6 (#18)
* Sampling over both env and denoising steps in DPPO updates (#13)

* sample one from each chain

* full random sampling

* Add Proficient Human (PH) Configs and Pipeline (#16)

* fix missing cfg

* add ph config

* fix how terminated flags are added to buffer in ibrl

* add ph config

* offline calql for 1M gradient updates

* bug fix: number of calql online gradient steps is the number of new transitions collected

* add sample config for DPPO with ta=1

* Sampling over both env and denoising steps in DPPO updates (#13)

* sample one from each chain

* full random sampling

* fix diffusion loss when predicting initial noise

* fix dppo inds

* fix typo

* remove print statement

---------

Co-authored-by: Justin M. Lidard <jlidard@neuronic.cs.princeton.edu>
Co-authored-by: allenzren <allen.ren@princeton.edu>

* update robomimic configs

* better calql formulation

* optimize calql and ibrl training

* optimize data transfer in ppo agents

* add kitchen configs

* re-organize config folders, rerun calql and rlpd

* add scratch gym locomotion configs

* add kitchen installation dependencies

* use truncated for termination in furniture env

* update furniture and gym configs

* update README and dependencies with kitchen

* add url for new data and checkpoints

* update demo RL configs

* update batch sizes for furniture unet configs

* raise error about dropout in residual mlp

* fix observation bug in bc loss

---------

Co-authored-by: Justin Lidard <60638575+jlidard@users.noreply.github.com>
Co-authored-by: Justin M. Lidard <jlidard@neuronic.cs.princeton.edu>
2024-10-30 19:58:06 -04:00

109 lines
2.7 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_ibrl_agent.TrainIBRLAgent
name: ${env_name}_ibrl_mlp_ta${horizon_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz
base_policy_path: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/kitchen-partial-v0_pre_gaussian_mlp_ta1/2024-10-25_01-45-52_42/checkpoint/state_5000.pt
offline_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/train.npz
seed: 42
device: cuda:0
env_name: kitchen-partial-v0
obs_dim: 60
action_dim: 9
cond_steps: 1
horizon_steps: 1
act_steps: 1
env:
n_envs: 1
name: ${env_name}
max_episode_steps: 280
reset_at_iteration: False
save_video: False
best_reward_threshold_for_success: 4
wrappers:
mujoco_locomotion_lowdim:
normalization_path: ${normalization_path}
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: ibrl-${env_name}
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 1000000
n_steps: 1
gamma: 0.99
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-4
critic_lr: 1e-3
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-3
save_model_freq: 50000
val_freq: 5000
render:
freq: 1
num: 0
log_freq: 200
# IBRL specific
batch_size: 256
target_ema_rate: 0.01
scale_reward_factor: 1
critic_num_update: 5
buffer_size: 500000
n_eval_episode: 40
n_explore_steps: 0
update_freq: 2
model:
_target_: model.rl.gaussian_ibrl.IBRL_Gaussian
randn_clip_value: 3
n_critics: 5
soft_action_sample: True
soft_action_sample_beta: 10
actor:
_target_: model.common.mlp_gaussian.Gaussian_MLP
mlp_dims: [1024, 1024, 1024]
activation_type: ReLU
dropout: 0.5
fixed_std: 0.1
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
action_dim: ${action_dim}
critic:
_target_: model.common.critic.CriticObsAct
mlp_dims: [1024, 1024, 1024]
activation_type: ReLU
use_layernorm: True
double_q: False # use ensemble
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
action_dim: ${action_dim}
action_steps: ${act_steps}
horizon_steps: ${horizon_steps}
device: ${device}
offline_dataset:
_target_: agent.dataset.sequence.StitchedSequenceQLearningDataset
dataset_path: ${offline_dataset_path}
horizon_steps: ${horizon_steps}
cond_steps: ${cond_steps}
device: ${device}
max_n_episodes: 50