dppo/cfg/gym/pretrain/kitchen-partial-v0/pre_gaussian_mlp.yaml
Allen Z. Ren dc8e0c9edc
v0.6 (#18)
* Sampling over both env and denoising steps in DPPO updates (#13)

* sample one from each chain

* full random sampling

* Add Proficient Human (PH) Configs and Pipeline (#16)

* fix missing cfg

* add ph config

* fix how terminated flags are added to buffer in ibrl

* add ph config

* offline calql for 1M gradient updates

* bug fix: number of calql online gradient steps is the number of new transitions collected

* add sample config for DPPO with ta=1

* Sampling over both env and denoising steps in DPPO updates (#13)

* sample one from each chain

* full random sampling

* fix diffusion loss when predicting initial noise

* fix dppo inds

* fix typo

* remove print statement

---------

Co-authored-by: Justin M. Lidard <jlidard@neuronic.cs.princeton.edu>
Co-authored-by: allenzren <allen.ren@princeton.edu>

* update robomimic configs

* better calql formulation

* optimize calql and ibrl training

* optimize data transfer in ppo agents

* add kitchen configs

* re-organize config folders, rerun calql and rlpd

* add scratch gym locomotion configs

* add kitchen installation dependencies

* use truncated for termination in furniture env

* update furniture and gym configs

* update README and dependencies with kitchen

* add url for new data and checkpoints

* update demo RL configs

* update batch sizes for furniture unet configs

* raise error about dropout in residual mlp

* fix observation bug in bc loss

---------

Co-authored-by: Justin Lidard <60638575+jlidard@users.noreply.github.com>
Co-authored-by: Justin M. Lidard <jlidard@neuronic.cs.princeton.edu>
2024-10-30 19:58:06 -04:00

59 lines
1.3 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.pretrain.train_gaussian_agent.TrainGaussianAgent
name: ${env}_pre_gaussian_mlp_ta${horizon_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
train_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env}/train.npz
seed: 42
device: cuda:0
env: kitchen-partial-v0
obs_dim: 60
action_dim: 9
horizon_steps: 4
cond_steps: 1
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: gym-${env}-pretrain
run: ${now:%H-%M-%S}_${name}
train:
n_epochs: 5000
batch_size: 128
learning_rate: 1e-3
weight_decay: 1e-6
lr_scheduler:
first_cycle_steps: 5000
warmup_steps: 1
min_lr: 1e-4
epoch_start_ema: 10
update_ema_freq: 5
save_model_freq: 1000
model:
_target_: model.common.gaussian.GaussianModel
network:
_target_: model.common.mlp_gaussian.Gaussian_MLP
mlp_dims: [256, 256, 256]
activation_type: Mish
fixed_std: 0.1
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
action_dim: ${action_dim}
horizon_steps: ${horizon_steps}
device: ${device}
ema:
decay: 0.995
train_dataset:
_target_: agent.dataset.sequence.StitchedSequenceDataset
dataset_path: ${train_dataset_path}
horizon_steps: ${horizon_steps}
cond_steps: ${cond_steps}
device: ${device}