dppo/cfg/gym/finetune/hopper-v2/ibrl_mlp.yaml
Allen Z. Ren e0842e71dc
v0.5 to main (#10)
* v0.5 (#9)

* update idql configs

* update awr configs

* update dipo configs

* update qsm configs

* update dqm configs

* update project version to 0.5.0
2024-10-07 16:35:13 -04:00

108 lines
2.6 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_ibrl_agent.TrainIBRLAgent
name: ${env_name}_ibrl_mlp_ta${horizon_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz
base_policy_path:
offline_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/train.npz
seed: 42
device: cuda:0
env_name: hopper-medium-v2
obs_dim: 11
action_dim: 3
cond_steps: 1
horizon_steps: 1
act_steps: 1
env:
n_envs: 1
name: ${env_name}
max_episode_steps: 1000
reset_at_iteration: False
save_video: False
best_reward_threshold_for_success: 3
wrappers:
mujoco_locomotion_lowdim:
normalization_path: ${normalization_path}
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: ibrl-${env_name}
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 250000
n_steps: 1
gamma: 0.99
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-4
critic_lr: 1e-4
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-4
save_model_freq: 50000
val_freq: 2000
render:
freq: 1
num: 0
log_freq: 200
# IBRL specific
batch_size: 256
target_ema_rate: 0.01
scale_reward_factor: 1
critic_num_update: 5
buffer_size: 1000000
n_eval_episode: 10
n_explore_steps: 0
update_freq: 2
model:
_target_: model.rl.gaussian_ibrl.IBRL_Gaussian
randn_clip_value: 3
n_critics: 5
soft_action_sample: True
soft_action_sample_beta: 0.1
network_path: ${base_policy_path}
actor:
_target_: model.common.mlp_gaussian.Gaussian_MLP
mlp_dims: [256, 256, 256]
activation_type: Mish
fixed_std: 0.1
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
critic:
_target_: model.common.critic.CriticObsAct
mlp_dims: [256, 256, 256]
activation_type: ReLU
use_layernorm: True
double_q: False # use ensemble
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
action_dim: ${action_dim}
action_steps: ${act_steps}
horizon_steps: ${horizon_steps}
device: ${device}
offline_dataset:
_target_: agent.dataset.sequence.StitchedSequenceQLearningDataset
dataset_path: ${offline_dataset_path}
horizon_steps: ${horizon_steps}
cond_steps: ${cond_steps}
device: ${device}