dppo/cfg/robomimic/finetune/can/calql_mlp_online.yaml
Allen Z. Ren e0842e71dc
v0.5 to main (#10)
* v0.5 (#9)

* update idql configs

* update awr configs

* update dipo configs

* update qsm configs

* update dqm configs

* update project version to 0.5.0
2024-10-07 16:35:13 -04:00

122 lines
3.1 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_calql_agent.TrainCalQLAgent
name: ${env_name}_calql_mlp_ta${horizon_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
base_policy_path:
robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}.json
normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/normalization.npz
offline_dataset_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/train.npz
seed: 42
device: cuda:0
env_name: can
obs_dim: 23
action_dim: 7
cond_steps: 1
horizon_steps: 1
act_steps: 1
env:
n_envs: 1
name: ${env_name}
best_reward_threshold_for_success: 1
max_episode_steps: 300
reset_at_iteration: False
save_video: False
wrappers:
robomimic_lowdim:
normalization_path: ${normalization_path}
low_dim_keys: ['robot0_eef_pos',
'robot0_eef_quat',
'robot0_gripper_qpos',
'object'] # same order of preprocessed observations
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: calql-${env_name}
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 10000
n_steps: 1 # not used
n_episode_per_epoch: 1
gamma: 0.99
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-4
critic_lr: 3e-4
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 3e-4
save_model_freq: 100
val_freq: 10
render:
freq: 1
num: 0
log_freq: 1
# CalQL specific
train_online: True
batch_size: 256
n_random_actions: 4
target_ema_rate: 0.005
scale_reward_factor: 1.0
num_update: 1000
buffer_size: 1000000
online_utd_ratio: 1
n_eval_episode: 40
n_explore_steps: 0
target_entropy: ${eval:'- ${action_dim} * ${act_steps}'}
init_temperature: 1
automatic_entropy_tuning: True
model:
_target_: model.rl.gaussian_calql.CalQL_Gaussian
randn_clip_value: 3
cql_min_q_weight: 5.0
tanh_output: True
network_path: ${base_policy_path}
actor:
_target_: model.common.mlp_gaussian.Gaussian_MLP
mlp_dims: [512, 512, 512]
activation_type: ReLU
tanh_output: False # squash after sampling instead
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
std_max: 7.3891
std_min: 0.0067
critic:
_target_: model.common.critic.CriticObsAct
mlp_dims: [256, 256, 256]
activation_type: ReLU
use_layernorm: True
double_q: True
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
action_dim: ${action_dim}
action_steps: ${act_steps}
horizon_steps: ${horizon_steps}
device: ${device}
offline_dataset:
_target_: agent.dataset.sequence.StitchedSequenceQLearningDataset
dataset_path: ${offline_dataset_path}
horizon_steps: ${horizon_steps}
cond_steps: ${cond_steps}
device: ${device}
discount_factor: ${train.gamma}
get_mc_return: True