fancy_gym/docs/build/html/guide/upgrading_envs.html

267 lines
20 KiB
HTML
Raw Permalink Normal View History

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
2024-03-14 15:58:08 +01:00
<title>Creating new MP Environments &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
<link rel="shortcut icon" href="../_static/icon.svg"/>
<!--[if lt IE 9]>
<script src="../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script src="../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Fancy" href="../envs/fancy/index.html" />
<link rel="prev" title="Basic Usage" href="basic_usage.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home">
Fancy Gym
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
2024-03-14 15:58:08 +01:00
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">User Guide</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="episodic_rl.html">What is Episodic RL?</a></li>
<li class="toctree-l1"><a class="reference internal" href="basic_usage.html">Basic Usage</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Creating new MP Environments</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Environments</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../envs/fancy/index.html">Fancy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../envs/dmc.html">DeepMind Control (DMC)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../envs/meta.html">Metaworld</a></li>
<li class="toctree-l1"><a class="reference internal" href="../envs/open_ai.html">Gymnasium</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Examples</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../examples/general.html">General Usage Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/dmc.html">DeepMind Control Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/metaworld.html">Metaworld Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/open_ai.html">OpenAI Envs Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/movement_primitives.html">Movement Primitives Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/mp_params_tuning.html">MP Params Tuning Example</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/pd_control_gain_tuning.html">PD Control Gain Tuning Example</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/replanning_envs.html">Replanning Example</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../api.html">API</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">Fancy Gym</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Creating new MP Environments</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/ALRhub/fancy_gym/blob/release/docs/source/guide/upgrading_envs.rst" class="fa fa-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="creating-new-mp-environments">
<h1>Creating new MP Environments<a class="headerlink" href="#creating-new-mp-environments" title="Permalink to this heading"></a></h1>
<p>This guide will explain to you how to upgrade an existing step-based Gymnasium environment into one, that supports Movement Primitives (MPs). If you are looking for a guide to build such a Gymnasium environment instead, please have a look at <a class="reference external" href="https://gymnasium.farama.org/tutorials/gymnasium_basics/environment_creation/">this guide</a>.</p>
<p>In case a required task is not supported yet in the MP framework, it can
be created relatively easy. For the task at hand, the following
<a class="reference external" href="https://github.com/ALRhub/fancy_gym/tree/master/fancy_gym/black_box/raw_interface_wrapper.py">interface</a>
needs to be implemented.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">abc</span> <span class="kn">import</span> <span class="n">abstractmethod</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Tuple</span>
<span class="kn">import</span> <span class="nn">gymnasium</span> <span class="k">as</span> <span class="nn">gym</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="k">class</span> <span class="nc">RawInterfaceWrapper</span><span class="p">(</span><span class="n">gym</span><span class="o">.</span><span class="n">Wrapper</span><span class="p">):</span>
<span class="n">mp_config</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;ProMP&#39;</span><span class="p">:</span> <span class="p">{},</span>
<span class="s1">&#39;DMP&#39;</span><span class="p">:</span> <span class="p">{},</span>
<span class="s1">&#39;ProDMP&#39;</span><span class="p">:</span> <span class="p">{},</span>
<span class="p">}</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">context_mask</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns boolean mask of the same shape as the observation space.</span>
<span class="sd"> It determines whether the observation is returned for the contextual case or not.</span>
<span class="sd"> This effectively allows to filter unwanted or unnecessary observations from the full step-based case.</span>
<span class="sd"> E.g. Velocities starting at 0 are only changing after the first action. Given we only receive the</span>
<span class="sd"> context/part of the first observation, the velocities are not necessary in the observation for the task.</span>
<span class="sd"> Returns:</span>
<span class="sd"> bool array representing the indices of the observations</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">env</span><span class="o">.</span><span class="n">observation_space</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">bool</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">current_pos</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the current position of the action/control dimension.</span>
<span class="sd"> The dimensionality has to match the action/control dimension.</span>
<span class="sd"> This is not required when exclusively using velocity control,</span>
<span class="sd"> it should, however, be implemented regardless.</span>
<span class="sd"> E.g. The joint positions that are directly or indirectly controlled by the action.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">()</span>
<span class="nd">@property</span>
<span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">current_vel</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the current velocity of the action/control dimension.</span>
<span class="sd"> The dimensionality has to match the action/control dimension.</span>
<span class="sd"> This is not required when exclusively using position control,</span>
<span class="sd"> it should, however, be implemented regardless.</span>
<span class="sd"> E.g. The joint velocities that are directly or indirectly controlled by the action.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">()</span>
</pre></div>
</div>
<p>Default configurations for MPs can be overitten by defining attributes
in mp_config. Available parameters are documented in the <a class="reference external" href="https://github.com/ALRhub/MP_PyTorch/blob/main/doc/README.md">MP_PyTorch
Userguide</a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">RawInterfaceWrapper</span><span class="p">(</span><span class="n">gym</span><span class="o">.</span><span class="n">Wrapper</span><span class="p">):</span>
<span class="n">mp_config</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;ProMP&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;phase_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;linear&#39;</span>
<span class="c1"># When selecting another generator type, the default configuration will not be merged for the attribute.</span>
<span class="p">},</span>
<span class="s1">&#39;controller_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;p_gains&#39;</span><span class="p">:</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]),</span>
<span class="s1">&#39;d_gains&#39;</span><span class="p">:</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]),</span>
<span class="p">},</span>
<span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">3</span><span class="p">,</span>
<span class="s1">&#39;num_basis_zero_start&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span>
<span class="s1">&#39;num_basis_zero_goal&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span>
<span class="p">},</span>
<span class="p">},</span>
<span class="s1">&#39;DMP&#39;</span><span class="p">:</span> <span class="p">{},</span>
<span class="s1">&#39;ProDMP&#39;</span><span class="p">:</span> <span class="p">{}</span><span class="o">.</span>
<span class="p">}</span>
<span class="p">[</span><span class="o">...</span><span class="p">]</span>
</pre></div>
</div>
<p>If you created a new task wrapper, feel free to open a PR, so we can
integrate it for others to use as well. Without the integration the task
can still be used. A rough outline can be shown here, for more details
we recommend having a look at the
<a class="reference internal" href="../examples/movement_primitives.html#example-mp"><span class="std std-ref">multiple examples</span></a>.</p>
<p>If the step-based is already registered with gym, you can simply do the
following:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">upgrade</span><span class="p">(</span>
<span class="nb">id</span><span class="o">=</span><span class="s1">&#39;custom/cool_new_env-v0&#39;</span><span class="p">,</span>
<span class="n">mp_wrapper</span><span class="o">=</span><span class="n">my_custom_MPWrapper</span>
<span class="p">)</span>
</pre></div>
</div>
<p>If the step-based is not yet registered with gym we can add both the
step-based and MP-versions via</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">register</span><span class="p">(</span>
<span class="nb">id</span><span class="o">=</span><span class="s1">&#39;custom/cool_new_env-v0&#39;</span><span class="p">,</span>
<span class="n">entry_point</span><span class="o">=</span><span class="n">my_custom_env</span><span class="p">,</span>
<span class="n">mp_wrapper</span><span class="o">=</span><span class="n">my_custom_MPWrapper</span>
<span class="p">)</span>
</pre></div>
</div>
<p>From this point on, you can access MP-version of your environments via</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="s1">&#39;custom_ProDMP/cool_new_env-v0&#39;</span><span class="p">)</span>
<span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">observation</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">5</span><span class="p">):</span>
<span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="n">observation</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="n">rewards</span><span class="p">)</span>
<span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">observation</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
</pre></div>
</div>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="basic_usage.html" class="btn btn-neutral float-left" title="Basic Usage" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="../envs/fancy/index.html" class="btn btn-neutral float-right" title="Fancy" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2020-2024, Fabian Otto, Onur Celik, Dominik Roth, Hongyi Zhou.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>