fancy_gym/alr_envs/utils/dmp_env_wrapper.py

132 lines
4.3 KiB
Python
Raw Normal View History

2021-01-11 16:08:42 +01:00
from mp_lib.phase import ExpDecayPhaseGenerator
from mp_lib.basis import DMPBasisGenerator
from mp_lib import dmps
import numpy as np
import gym
class DmpEnvWrapperBase(gym.Wrapper):
def __init__(self, env, num_dof, num_basis, duration=1, dt=0.01, learn_goal=False):
super(DmpEnvWrapperBase, self).__init__(env)
self.num_dof = num_dof
self.num_basis = num_basis
self.dim = num_dof * num_basis
if learn_goal:
self.dim += num_dof
self.learn_goal = True
2021-01-12 10:52:08 +01:00
self.duration = duration # seconds
2021-01-11 16:08:42 +01:00
time_steps = int(duration / dt)
self.t = np.linspace(0, duration, time_steps)
phase_generator = ExpDecayPhaseGenerator(alpha_phase=5, duration=duration)
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=self.num_basis)
self.dmp = dmps.DMP(num_dof=num_dof,
basis_generator=basis_generator,
phase_generator=phase_generator,
num_time_steps=time_steps,
dt=dt
)
self.dmp.dmp_start_pos = env.start_pos.reshape((1, num_dof))
dmp_weights = np.zeros((num_basis, num_dof))
dmp_goal_pos = np.zeros(num_dof)
self.dmp.set_weights(dmp_weights, dmp_goal_pos)
2021-01-12 10:52:08 +01:00
def __call__(self, params):
params = np.atleast_2d(params)
observations = []
rewards = []
dones = []
infos = []
for p in params:
observation, reward, done, info = self.rollout(p)
observations.append(observation)
rewards.append(reward)
dones.append(done)
infos.append(info)
return np.array(rewards)
2021-01-11 16:08:42 +01:00
def goal_and_weights(self, params):
if len(params.shape) > 1:
assert params.shape[1] == self.dim
else:
assert len(params) == self.dim
params = np.reshape(params, [1, self.dim])
if self.learn_goal:
goal_pos = params[0, -self.num_dof:]
weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof])
else:
goal_pos = None
weight_matrix = np.reshape(params, [self.num_basis, self.num_dof])
return goal_pos, weight_matrix
2021-01-12 10:52:08 +01:00
def rollout(self, params, render=False):
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
2021-01-11 16:08:42 +01:00
raise NotImplementedError
class DmpEnvWrapperAngle(DmpEnvWrapperBase):
2021-01-12 10:52:08 +01:00
"""
Wrapper for gym environments which creates a trajectory in joint angle space
"""
def rollout(self, action, render=False):
2021-01-11 16:08:42 +01:00
goal_pos, weight_matrix = self.goal_and_weights(action)
2021-01-12 10:52:08 +01:00
if hasattr(self.env, "weight_matrix_scale"):
weight_matrix = weight_matrix * self.env.weight_matrix_scale
2021-01-11 16:08:42 +01:00
self.dmp.set_weights(weight_matrix, goal_pos)
trajectory, velocities = self.dmp.reference_trajectory(self.t)
rews = []
2021-01-12 10:52:08 +01:00
self.env.reset()
2021-01-11 16:08:42 +01:00
for t, traj in enumerate(trajectory):
obs, rew, done, info = self.env.step(traj)
rews.append(rew)
if render:
self.env.render(mode="human")
if done:
break
reward = np.sum(rews)
2021-01-12 10:52:08 +01:00
# done = True
2021-01-11 16:08:42 +01:00
info = {}
return obs, reward, done, info
class DmpEnvWrapperVel(DmpEnvWrapperBase):
2021-01-12 10:52:08 +01:00
"""
Wrapper for gym environments which creates a trajectory in joint velocity space
"""
def rollout(self, action, render=False):
2021-01-11 16:08:42 +01:00
goal_pos, weight_matrix = self.goal_and_weights(action)
2021-01-12 10:52:08 +01:00
if hasattr(self.env, "weight_matrix_scale"):
weight_matrix = weight_matrix * self.env.weight_matrix_scale
2021-01-11 16:08:42 +01:00
self.dmp.set_weights(weight_matrix, goal_pos)
trajectory, velocities = self.dmp.reference_trajectory(self.t)
rews = []
2021-01-14 17:10:03 +01:00
infos = []
2021-01-11 16:08:42 +01:00
2021-01-12 10:52:08 +01:00
self.env.reset()
2021-01-11 16:08:42 +01:00
for t, vel in enumerate(velocities):
obs, rew, done, info = self.env.step(vel)
rews.append(rew)
2021-01-14 17:10:03 +01:00
infos.append(info)
2021-01-11 16:08:42 +01:00
if render:
self.env.render(mode="human")
if done:
break
reward = np.sum(rews)
return obs, reward, done, info