fancy_gym/alr_envs/black_box/raw_interface_wrapper.py

74 lines
2.6 KiB
Python
Raw Normal View History

2022-06-29 09:37:18 +02:00
from typing import Union, Tuple
from mp_pytorch.mp.mp_interfaces import MPInterface
from abc import abstractmethod
2022-06-29 09:37:18 +02:00
import gym
import numpy as np
class RawInterfaceWrapper(gym.Wrapper):
@property
@abstractmethod
def context_mask(self) -> np.ndarray:
"""
This function defines the contexts. The contexts are defined as specific observations.
Returns:
bool array representing the indices of the observations
"""
return np.ones(self.env.observation_space.shape[0], dtype=bool)
@property
@abstractmethod
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
"""
Returns the current position of the action/control dimension.
The dimensionality has to match the action/control dimension.
This is not required when exclusively using velocity control,
it should, however, be implemented regardless.
E.g. The joint positions that are directly or indirectly controlled by the action.
"""
raise NotImplementedError()
@property
@abstractmethod
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
"""
Returns the current velocity of the action/control dimension.
The dimensionality has to match the action/control dimension.
This is not required when exclusively using position control,
it should, however, be implemented regardless.
E.g. The joint velocities that are directly or indirectly controlled by the action.
"""
raise NotImplementedError()
@property
def dt(self) -> float:
"""
Control frequency of the environment
Returns: float
"""
2022-06-29 12:25:40 +02:00
return self.env.dt
2022-06-29 09:37:18 +02:00
def do_replanning(self, pos, vel, s, a, t):
# return t % 100 == 0
# return bool(self.replanning_model(s))
return False
2022-07-06 09:05:35 +02:00
def _episode_callback(self, action: np.ndarray, traj_gen: MPInterface) -> Tuple[
np.ndarray, Union[np.ndarray, None]]:
2022-06-29 09:37:18 +02:00
"""
Used to extract the parameters for the motion primitive and other parameters from an action array which might
include other actions like ball releasing time for the beer pong environment.
This only needs to be overwritten if the action space is modified.
Args:
2022-06-30 14:08:54 +02:00
action: a vector instance of the whole action space, includes traj_gen parameters and additional parameters if
specified, else only traj_gen parameters
2022-06-29 09:37:18 +02:00
Returns:
Tuple: mp_arguments and other arguments
"""
return action, None