2021-08-19 09:30:54 +02:00
|
|
|
from typing import Tuple, Union
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from mp_env_api import MPEnvWrapper
|
|
|
|
|
|
|
|
|
|
|
|
class MPWrapper(MPEnvWrapper):
|
2021-08-20 14:23:33 +02:00
|
|
|
"""
|
|
|
|
This Wrapper is for environments where merely the goal changes in the beginning
|
|
|
|
and no secondary objects or end effectors are altered at the start of an episode.
|
|
|
|
You can verify this by executing the code below for your environment id and check if the output is non-zero
|
|
|
|
at the same indices.
|
|
|
|
```python
|
|
|
|
import alr_envs
|
|
|
|
env = alr_envs.make(env_id, 1)
|
|
|
|
print(env.reset() - env.reset())
|
|
|
|
array([ 0. , 0. , 0. , 0. , !=0,
|
|
|
|
!=0 , !=0 , 0. , 0. , 0. ,
|
|
|
|
0. , 0. , 0. , 0. , 0. ,
|
|
|
|
0. , 0. , 0. , 0. , 0. ,
|
|
|
|
0. , 0. , !=0 , !=0 , !=0 ,
|
|
|
|
0. , 0. , 0. , 0. , 0. ,
|
|
|
|
0. , 0. , 0. , 0. , 0. ,
|
|
|
|
0. , !=0 , !=0 , !=0])
|
|
|
|
```
|
|
|
|
"""
|
2021-08-19 09:30:54 +02:00
|
|
|
|
|
|
|
@property
|
|
|
|
def active_obs(self):
|
|
|
|
# This structure is the same for all metaworld environments.
|
|
|
|
# Only the observations which change could differ
|
|
|
|
return np.hstack([
|
|
|
|
# Current observation
|
|
|
|
[False] * 3, # end-effector position
|
|
|
|
[False] * 1, # normalized gripper open distance
|
|
|
|
[True] * 3, # main object position
|
|
|
|
[False] * 4, # main object quaternion
|
|
|
|
[False] * 3, # secondary object position
|
|
|
|
[False] * 4, # secondary object quaternion
|
|
|
|
# Previous observation
|
|
|
|
# TODO: Include previous values? According to their source they might be wrong for the first iteration.
|
|
|
|
[False] * 3, # previous end-effector position
|
|
|
|
[False] * 1, # previous normalized gripper open distance
|
|
|
|
[False] * 3, # previous main object position
|
|
|
|
[False] * 4, # previous main object quaternion
|
|
|
|
[False] * 3, # previous second object position
|
|
|
|
[False] * 4, # previous second object quaternion
|
|
|
|
# Goal
|
|
|
|
[True] * 3, # goal position
|
|
|
|
])
|
|
|
|
|
|
|
|
@property
|
|
|
|
def current_pos(self) -> Union[float, int, np.ndarray]:
|
2021-08-19 16:46:11 +02:00
|
|
|
r_close = self.env.data.get_joint_qpos("r_close")
|
|
|
|
return np.hstack([self.env.data.mocap_pos.flatten(), r_close])
|
2021-08-19 09:30:54 +02:00
|
|
|
|
|
|
|
@property
|
|
|
|
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
2021-08-19 16:46:11 +02:00
|
|
|
raise NotImplementedError("Velocity cannot be retrieved.")
|
2021-08-19 09:30:54 +02:00
|
|
|
|
|
|
|
@property
|
|
|
|
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
|
|
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dt(self) -> Union[float, int]:
|
|
|
|
return self.env.dt
|