fancy_gym/test/test_custom.py

119 lines
4.5 KiB
Python
Raw Normal View History

import unittest
import gym
import numpy as np
import alr_envs # noqa
from alr_envs.utils.make_env_helpers import make
CUSTOM_IDS = [spec.id for spec in gym.envs.registry.all() if
2022-07-12 15:43:46 +02:00
"alr_envs" in spec.entry_point and 'make_bb_env_helper' not in spec.entry_point]
SEED = 1
class TestCustomEnvironments(unittest.TestCase):
def _run_env(self, env_id, iterations=None, seed=SEED, render=False):
"""
Example for running a DMC based env in the step based setting.
The env_id has to be specified as `domain_name-task_name` or
for manipulation tasks as `manipulation-environment_name`
Args:
env_id: Either `domain_name-task_name` or `manipulation-environment_name`
iterations: Number of rollout steps to run
seed: random seeding
render: Render the episode
Returns: observations, rewards, dones, actions
"""
env: gym.Env = make(env_id, seed=seed)
rewards = []
actions = []
observations = []
dones = []
obs = env.reset()
self._verify_observations(obs, env.observation_space, "reset()")
2022-07-07 10:47:04 +02:00
iterations = iterations or (env.spec.max_episode_steps or 1)
# number of samples(multiple environment steps)
for i in range(iterations):
observations.append(obs)
ac = env.action_space.sample()
actions.append(ac)
obs, reward, done, info = env.step(ac)
self._verify_observations(obs, env.observation_space, "step()")
self._verify_reward(reward)
self._verify_done(done)
rewards.append(reward)
dones.append(done)
if render:
env.render("human")
if done:
2022-07-11 16:18:18 +02:00
break
2022-07-11 16:18:18 +02:00
assert done, "Done flag is not True after end of episode."
observations.append(obs)
env.close()
del env
return np.array(observations), np.array(rewards), np.array(dones), np.array(actions)
def _run_env_determinism(self, ids):
seed = 0
for env_id in ids:
with self.subTest(msg=env_id):
traj1 = self._run_env(env_id, seed=seed)
traj2 = self._run_env(env_id, seed=seed)
for i, time_step in enumerate(zip(*traj1, *traj2)):
obs1, rwd1, done1, ac1, obs2, rwd2, done2, ac2 = time_step
self.assertTrue(np.array_equal(ac1, ac2), f"Actions [{i}] delta {ac1 - ac2} is not zero.")
self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] delta {obs1 - obs2} is not zero.")
self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.")
self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.")
def _verify_observations(self, obs, observation_space, obs_type="reset()"):
self.assertTrue(observation_space.contains(obs),
f"Observation {obs} received from {obs_type} "
f"not contained in observation space {observation_space}.")
def _verify_reward(self, reward):
2022-07-11 16:18:18 +02:00
self.assertIsInstance(reward, (float, int), f"Returned type {type(reward)} as reward, expected float or int.")
def _verify_done(self, done):
self.assertIsInstance(done, bool, f"Returned {done} as done flag, expected bool.")
def test_step_functionality(self):
"""Tests that step environments run without errors using random actions."""
for env_id in CUSTOM_IDS:
with self.subTest(msg=env_id):
self._run_env(env_id)
def test_step_determinism(self):
"""Tests that for step environments identical seeds produce identical trajectories."""
self._run_env_determinism(CUSTOM_IDS)
def test_bb_functionality(self):
"""Tests that black box environments run without errors using random actions."""
for traj_gen, env_ids in alr_envs.ALL_ALR_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
for id in env_ids:
with self.subTest(msg=id):
self._run_env(id)
def test_bb_determinism(self):
"""Tests that for black box environment identical seeds produce identical trajectories."""
for traj_gen, env_ids in alr_envs.ALL_ALR_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
self._run_env_determinism(env_ids)
if __name__ == '__main__':
unittest.main()