83 lines
2.3 KiB
Python
83 lines
2.3 KiB
Python
|
import gym
|
||
|
from gym.vector.async_vector_env import AsyncVectorEnv
|
||
|
import numpy as np
|
||
|
from _collections import defaultdict
|
||
|
|
||
|
|
||
|
def make_env(env_id, rank, seed=0):
|
||
|
env = gym.make(env_id)
|
||
|
env.seed(seed + rank)
|
||
|
return lambda: env
|
||
|
|
||
|
|
||
|
def split_array(ary, size):
|
||
|
n_samples = len(ary)
|
||
|
if n_samples < size:
|
||
|
tmp = np.zeros((size, ary.shape[1]))
|
||
|
tmp[0:n_samples] = ary
|
||
|
return [tmp]
|
||
|
elif n_samples == size:
|
||
|
return [ary]
|
||
|
else:
|
||
|
repeat = int(np.ceil(n_samples / size))
|
||
|
split = [k * size for k in range(1, repeat)]
|
||
|
sub_arys = np.split(ary, split)
|
||
|
|
||
|
if n_samples % repeat != 0:
|
||
|
tmp = np.zeros_like(sub_arys[0])
|
||
|
last = sub_arys[-1]
|
||
|
tmp[0: len(last)] = last
|
||
|
sub_arys[-1] = tmp
|
||
|
|
||
|
return sub_arys
|
||
|
|
||
|
|
||
|
def _flatten_list(l):
|
||
|
assert isinstance(l, (list, tuple))
|
||
|
assert len(l) > 0
|
||
|
assert all([len(l_) > 0 for l_ in l])
|
||
|
|
||
|
return [l__ for l_ in l for l__ in l_]
|
||
|
|
||
|
|
||
|
class AlrMpEnvSampler:
|
||
|
"""
|
||
|
An asynchronous sampler for MPWrapper environments. A sampler object can be called with a set of parameters and
|
||
|
returns the corresponding final obs, rewards, dones and info dicts.
|
||
|
"""
|
||
|
def __init__(self, env_id, num_envs, seed=0):
|
||
|
self.num_envs = num_envs
|
||
|
self.env = AsyncVectorEnv([make_env(env_id, seed, i) for i in range(num_envs)])
|
||
|
|
||
|
def __call__(self, params):
|
||
|
params = np.atleast_2d(params)
|
||
|
n_samples = params.shape[0]
|
||
|
split_params = split_array(params, self.num_envs)
|
||
|
|
||
|
vals = defaultdict(list)
|
||
|
for p in split_params:
|
||
|
obs, reward, done, info = self.env.step(p)
|
||
|
vals['obs'].append(obs)
|
||
|
vals['reward'].append(reward)
|
||
|
vals['done'].append(done)
|
||
|
vals['info'].append(info)
|
||
|
|
||
|
# do not return values above threshold
|
||
|
return np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples],\
|
||
|
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
env_name = "alr_envs:HoleReacherDMP-v0"
|
||
|
n_cpu = 8
|
||
|
dim = 30
|
||
|
n_samples = 20
|
||
|
|
||
|
sampler = AlrMpEnvSampler(env_name, num_envs=n_cpu)
|
||
|
|
||
|
thetas = np.random.randn(n_samples, dim) # usually form a search distribution
|
||
|
|
||
|
_, rewards, __, ___ = sampler(thetas)
|
||
|
|
||
|
print(rewards)
|