From 0dec89ff178bed3ef00c9054269c893c963a85f8 Mon Sep 17 00:00:00 2001 From: ottofabian Date: Mon, 26 Jul 2021 17:07:45 +0200 Subject: [PATCH] Added basic test cases for functionality and determinism --- test/__init__.py | 0 test/test_envs.py | 108 ++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 108 insertions(+) create mode 100644 test/__init__.py create mode 100644 test/test_envs.py diff --git a/test/__init__.py b/test/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/test/test_envs.py b/test/test_envs.py new file mode 100644 index 0000000..addd1a3 --- /dev/null +++ b/test/test_envs.py @@ -0,0 +1,108 @@ +import unittest + +import gym +import numpy as np + +import alr_envs # noqa +from alr_envs.utils.make_env_helpers import make_env + +ALL_SPECS = list(spec for spec in gym.envs.registry.all() if "alr_envs" in spec.entry_point) +SEED = 1 + + +class TestEnvironments(unittest.TestCase): + + def _run_env(self, env_id, iterations=None, seed=SEED, render=False): + """ + Example for running a DMC based env in the step based setting. + The env_id has to be specified as `domain_name-task_name` or + for manipulation tasks as `manipulation-environment_name` + + Args: + env_id: Either `domain_name-task_name` or `manipulation-environment_name` + iterations: Number of rollout steps to run + seed= random seeding + render: Render the episode + + Returns: + + """ + env: gym.Env = make_env(env_id, seed=seed) + rewards = [] + observations = [] + dones = [] + obs = env.reset() + self._verify_observations(obs, env.observation_space, "reset()") + + length = env.spec.max_episode_steps + if iterations is None: + if length is None: + iterations = 1 + else: + iterations = length + + # number of samples(multiple environment steps) + for i in range(iterations): + observations.append(obs) + + ac = env.action_space.sample() + # ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape) + obs, reward, done, info = env.step(ac) + + self._verify_observations(obs, env.observation_space, "step()") + self._verify_reward(reward) + self._verify_done(done) + + rewards.append(reward) + dones.append(done) + + if render: + env.render("human") + + if done: + obs = env.reset() + + observations.append(obs) + env.close() + del env + return np.array(observations), np.array(rewards), np.array(dones) + + def _verify_observations(self, obs, observation_space, obs_type="reset()"): + self.assertTrue(observation_space.contains(obs), + f"Observation {obs} received from {obs_type} " + f"not contained in observation space {observation_space}.") + + def _verify_reward(self, reward): + self.assertIsInstance(reward, float, f"Returned {reward} as reward, expected float.") + + def _verify_done(self, done): + self.assertIsInstance(done, bool, f"Returned {done} as done flag, expected bool.") + + def test_environment_functionality(self): + """Tests that environments runs without errors using random actions.""" + for spec in ALL_SPECS: + # try: + with self.subTest(msg=spec.id): + self._run_env(spec.id) + + def test_environment_determinism(self): + """Tests that identical seeds produce identical trajectories.""" + seed = 0 + # Iterate over two trajectories generated using identical sequences of + # random actions, and with identical task random states. Check that the + # observations, rewards, discounts and step types are identical. + for spec in ALL_SPECS: + # try: + with self.subTest(msg=spec.id): + self._run_env(spec.id) + traj1 = self._run_env(spec.id, seed=seed) + traj2 = self._run_env(spec.id, seed=seed) + for i, time_step in enumerate(zip(*traj1, *traj2)): + obs1, rwd1, done1, obs2, rwd2, done2 = time_step + self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match.") + self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.") + self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.") + + +if __name__ == '__main__': + unittest.main()