mp_pytorch now running with zero start/goal promp, but delay is not working

This commit is contained in:
Onur 2022-04-29 18:46:09 +02:00
parent cd33e82d3c
commit 137eb726eb
3 changed files with 41 additions and 9 deletions

View File

@ -56,19 +56,22 @@ class ALRReacherEnv(MujocoEnv, utils.EzPickle):
return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl,
velocity=angular_vel, reward_balance=reward_balance,
end_effector=self.get_body_com("fingertip").copy(),
goal=self.goal if hasattr(self, "goal") else None)
goal=self.goal if hasattr(self, "goal") else None,
joint_pos = self.sim.data.qpos.flat[:self.n_links].copy(),
joint_vel = self.sim.data.qvel.flat[:self.n_links].copy())
def viewer_setup(self):
self.viewer.cam.trackbodyid = 0
def reset_model(self):
qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
# qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
qpos = self.init_qpos
while True:
self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
if np.linalg.norm(self.goal) < self.n_links / 10:
break
qpos[-2:] = self.goal
qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
qvel = self.init_qvel# + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
qvel[-2:] = 0
self.set_state(qpos, qvel)
self._steps = 0

View File

@ -22,3 +22,6 @@ class MPWrapper(BaseMPWrapper):
# self.get_body_com("target"), # only return target to make problem harder
[False], # step
])
def _step_callback(self, action):
pass

View File

@ -6,6 +6,7 @@ import numpy as np
from gym import spaces
from gym.envs.mujoco import MujocoEnv
from policies import get_policy_class, BaseController
from mp_pytorch.mp.mp_interfaces import MPInterface
@ -24,7 +25,6 @@ class BaseMPWrapper(gym.Env, ABC):
policy_type: Type or object defining the policy that is used to generate action based on the trajectory
weight_scale: Scaling parameter for the actions given to this wrapper
render_mode: Equivalent to gym render mode
"""
def __init__(self,
@ -44,6 +44,7 @@ class BaseMPWrapper(gym.Env, ABC):
self.traj_steps = int(duration / self.dt)
self.post_traj_steps = self.env.spec.max_episode_steps - self.traj_steps
# TODO: move to constructer, use policy factory instead what Fabian already coded
if isinstance(policy_type, str):
# pop policy kwargs here such that they are not passed to the initialize_mp method
self.policy = get_policy_class(policy_type, self, **mp_kwargs.pop('policy_kwargs', {}))
@ -56,11 +57,10 @@ class BaseMPWrapper(gym.Env, ABC):
# rendering
self.render_mode = render_mode
self.render_kwargs = {}
self.time_steps = np.linspace(0, self.duration, self.traj_steps + 1)
# self.time_steps = np.linspace(0, self.duration, self.traj_steps + 1)
self.time_steps = np.linspace(0, self.duration, self.traj_steps)
self.mp.set_mp_times(self.time_steps)
# TODO: put action bounds in mp wrapper (e.g. time bound for traj. length ...), otherwis learning the durations
# might not work
# action_bounds = np.inf * np.ones((np.prod(self.mp.num_params)))
min_action_bounds, max_action_bounds = mp.get_param_bounds()
self.action_space = gym.spaces.Box(low=min_action_bounds.numpy(), high=max_action_bounds.numpy(),
@ -73,11 +73,13 @@ class BaseMPWrapper(gym.Env, ABC):
def get_trajectory(self, action: np.ndarray) -> Tuple:
self.mp.set_params(action)
self.mp.set_boundary_conditions(bc_time=self.time_steps[:1], bc_pos=self.current_pos, bc_vel=self.current_vel)
traj_dict = self.mp.get_mp_trajs(get_pos = True, get_vel = True)
trajectory_tensor, velocity_tensor = traj_dict['pos'], traj_dict['vel']
trajectory = trajectory_tensor.numpy()
velocity = velocity_tensor.numpy()
if self.post_traj_steps > 0:
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.num_dof))])
@ -112,10 +114,16 @@ class BaseMPWrapper(gym.Env, ABC):
"""
raise NotImplementedError()
@abstractmethod
def _step_callback(self, action):
pass
def step(self, action: np.ndarray):
""" This function generates a trajectory based on a MP and then does the usual loop over reset and step"""
# TODO: Think about sequencing
# TODO: put in a callback function here which every environment can implement. Important for e.g. BP to allow the
# TODO: Reward Function rather here?
# agent to learn when to release the ball
trajectory, velocity = self.get_trajectory(action)
trajectory_length = len(trajectory)
@ -148,6 +156,7 @@ class BaseMPWrapper(gym.Env, ABC):
break
infos.update({k: v[:t + 1] for k, v in infos.items()})
infos['trajectory'] = trajectory
# TODO: remove step information? Might be relevant for debugging -> return only in debug mode (verbose)?
infos['step_actions'] = actions[:t + 1]
infos['step_observations'] = observations[:t + 1]
infos['step_rewards'] = rewards[:t + 1]
@ -168,3 +177,20 @@ class BaseMPWrapper(gym.Env, ABC):
def get_observation_from_step(self, observation: np.ndarray) -> np.ndarray:
return observation[self.active_obs]
def plot_trajs(self, des_trajs, des_vels):
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
pos_fig = plt.figure('positions')
vel_fig = plt.figure('velocities')
for i in range(des_trajs.shape[1]):
plt.figure(pos_fig.number)
plt.subplot(des_trajs.shape[1], 1, i + 1)
plt.plot(np.ones(des_trajs.shape[0])*self.current_pos[i])
plt.plot(des_trajs[:, i])
plt.figure(vel_fig.number)
plt.subplot(des_vels.shape[1], 1, i + 1)
plt.plot(np.ones(des_trajs.shape[0])*self.current_vel[i])
plt.plot(des_vels[:, i])