added DMC Reacher, cartpole, reach_size; removed BBO

This commit is contained in:
ottofabian 2021-07-26 17:07:17 +02:00
parent 7e2f5d664b
commit 24e73d5098
22 changed files with 563 additions and 439 deletions

View File

@ -48,12 +48,6 @@ All environments provide the full episode reward and additional information abou
[//]: |`HoleReacherDetPMP-v0`|
### Stochastic Search
|Name| Description|Horizon|Action Dimension|Observation Dimension
|---|---|---|---|---|
|`Rosenbrock{dim}-v0`| Gym interface for Rosenbrock function. `{dim}` is one of 5, 10, 25, 50 or 100. | 1 | `{dim}` | 0
## Install
1. Clone the repository
```bash

View File

@ -4,9 +4,11 @@ from gym.envs.registration import register
from alr_envs.classic_control.hole_reacher.hole_reacher_mp_wrapper import HoleReacherMPWrapper
from alr_envs.classic_control.simple_reacher.simple_reacher_mp_wrapper import SimpleReacherMPWrapper
from alr_envs.classic_control.viapoint_reacher.viapoint_reacher_mp_wrapper import ViaPointReacherMPWrapper
from alr_envs.dmc.ball_in_cup.ball_in_the_cup_mp_wrapper import DMCBallInCupMPWrapper
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_mp_wrapper import BallInACupMPWrapper
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
from alr_envs.dmc.manipulation.reach.reach_mp_wrapper import DMCReachSiteMPWrapper
from alr_envs.dmc.suite.ball_in_cup.ball_in_cup_mp_wrapper import DMCBallInCupMPWrapper
from alr_envs.dmc.suite.cartpole.cartpole_mp_wrapper import DMCCartpoleMPWrapper, DMCCartpoleThreePolesMPWrapper, \
DMCCartpoleTwoPolesMPWrapper
from alr_envs.dmc.suite.reacher.reacher_mp_wrapper import DMCReacherMPWrapper
# Mujoco
@ -88,54 +90,6 @@ register(
}
)
register(
id='ALRBallInACupSimple-v0',
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
max_episode_steps=4000,
kwargs={
"simplified": True,
"reward_type": "no_context",
}
)
register(
id='ALRBallInACupPDSimple-v0',
entry_point='alr_envs.mujoco:ALRBallInACupPDEnv',
max_episode_steps=4000,
kwargs={
"simplified": True,
"reward_type": "no_context"
}
)
register(
id='ALRBallInACupPD-v0',
entry_point='alr_envs.mujoco:ALRBallInACupPDEnv',
max_episode_steps=4000,
kwargs={
"simplified": False,
"reward_type": "no_context"
}
)
register(
id='ALRBallInACup-v0',
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
max_episode_steps=4000,
kwargs={
"reward_type": "no_context"
}
)
register(
id='ALRBallInACupGoal-v0',
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
max_episode_steps=4000,
kwargs={
"reward_type": "contextual_goal"
}
)
# Classic control
## Simple Reacher
@ -239,7 +193,7 @@ register(
}
)
# MP environments
# Motion Primitive Environments
## Simple Reacher
versions = ["SimpleReacher-v0", "SimpleReacher-v1", "LongSimpleReacher-v0", "LongSimpleReacher-v1"]
@ -255,7 +209,7 @@ for v in versions:
"mp_kwargs": {
"num_dof": 2 if "long" not in v.lower() else 5,
"num_basis": 5,
"duration": 2,
"duration": 20,
"alpha_phase": 2,
"learn_goal": True,
"policy_type": "velocity",
@ -325,200 +279,14 @@ for v in versions:
}
)
# TODO: properly add final_pos
register(
id='HoleReacherFixedGoalDMP-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": "alr_envs:HoleReacher-v0",
"wrappers": [HoleReacherMPWrapper],
"mp_kwargs": {
"num_dof": 5,
"num_basis": 5,
"duration": 2,
"learn_goal": False,
"alpha_phase": 2,
"policy_type": "velocity",
"weights_scale": 50,
"goal_scale": 0.1
}
}
)
## Ball in Cup
register(
id='ALRBallInACupSimpleDMP-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
kwargs={
"name": "alr_envs:ALRBallInACupSimple-v0",
"wrappers": [BallInACupMPWrapper],
"mp_kwargs": {
"num_dof": 3,
"num_basis": 5,
"duration": 3.5,
"post_traj_time": 4.5,
"learn_goal": False,
"alpha_phase": 3,
"bandwidth_factor": 2.5,
"policy_type": "motor",
"weights_scale": 100,
"return_to_start": True,
"policy_kwargs": {
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
}
}
)
register(
id='ALRBallInACupDMP-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
kwargs={
"name": "alr_envs:ALRBallInACup-v0",
"wrappers": [BallInACupMPWrapper],
"mp_kwargs": {
"num_dof": 7,
"num_basis": 5,
"duration": 3.5,
"post_traj_time": 4.5,
"learn_goal": False,
"alpha_phase": 3,
"bandwidth_factor": 2.5,
"policy_type": "motor",
"weights_scale": 100,
"return_to_start": True,
"policy_kwargs": {
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
}
}
)
register(
id='ALRBallInACupSimpleDetPMP-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": "alr_envs:ALRBallInACupSimple-v0",
"wrappers": [BallInACupMPWrapper],
"mp_kwargs": {
"num_dof": 3,
"num_basis": 5,
"duration": 3.5,
"post_traj_time": 4.5,
"width": 0.0035,
# "off": -0.05,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"zero_goal": True,
"policy_kwargs": {
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
}
}
)
register(
id='ALRBallInACupPDSimpleDetPMP-v0',
entry_point='alr_envs.mujoco.ball_in_a_cup.biac_pd:make_detpmp_env_helper',
kwargs={
"name": "alr_envs:ALRBallInACupPDSimple-v0",
"wrappers": [BallInACupMPWrapper],
"mp_kwargs": {
"num_dof": 3,
"num_basis": 5,
"duration": 3.5,
"post_traj_time": 4.5,
"width": 0.0035,
# "off": -0.05,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"zero_goal": True,
"policy_kwargs": {
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
}
}
)
register(
id='ALRBallInACupPDDetPMP-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env',
kwargs={
"name": "alr_envs:ALRBallInACupPD-v0",
"num_dof": 7,
"num_basis": 5,
"duration": 3.5,
"post_traj_time": 4.5,
"width": 0.0035,
# "off": -0.05,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"zero_goal": True,
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
)
register(
id='ALRBallInACupDetPMP-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": "alr_envs:ALRBallInACupSimple-v0",
"wrappers": [BallInACupMPWrapper],
"mp_kwargs": {
"num_dof": 7,
"num_basis": 5,
"duration": 3.5,
"post_traj_time": 4.5,
"width": 0.0035,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"zero_goal": True,
"policy_kwargs": {
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
}
}
)
register(
id='ALRBallInACupGoalDMP-v0',
entry_point='alr_envs.utils.make_env_helpers:make_contextual_env',
kwargs={
"name": "alr_envs:ALRBallInACupGoal-v0",
"wrappers": [BallInACupMPWrapper],
"mp_kwargs": {
"num_dof": 7,
"num_basis": 5,
"duration": 3.5,
"post_traj_time": 4.5,
"learn_goal": True,
"alpha_phase": 3,
"bandwidth_factor": 2.5,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
}
}
)
## DMC
## Deep Mind Control Suite (DMC)
### Suite
# tasks = ["ball_in_cup-catch", "reacher-easy", "reacher-hard", "cartpole-balance", "cartpole-balance_sparse",
# "cartpole-swingup", "cartpole-swingup_sparse", "cartpole-two_poles", "cartpole-three_poles"]
# wrappers = [DMCBallInCupMPWrapper, DMCReacherMPWrapper, DMCReacherMPWrapper, DMCCartpoleMPWrapper,
# partial(DMCCartpoleMPWrapper)]
# for t, w in zip(tasks, wrappers):
register(
id=f'dmc_ball_in_cup-catch_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
@ -570,14 +338,455 @@ register(
}
)
# BBO functions
for dim in [5, 10, 25, 50, 100]:
register(
id=f'Rosenbrock{dim}-v0',
entry_point='alr_envs.stochastic_search:StochasticSearchEnv',
max_episode_steps=1,
# TODO tune gains and episode length for all below
register(
id=f'dmc_reacher-easy_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"cost_f": Rosenbrock(dim),
"name": f"reacher-easy",
"time_limit": 1,
"episode_length": 50,
"wrappers": [DMCReacherMPWrapper],
"mp_kwargs": {
"num_dof": 2,
"num_basis": 5,
"duration": 1,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
)
}
}
)
register(
id=f'dmc_reacher-easy_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"reacher-easy",
"time_limit": 1,
"episode_length": 50,
"wrappers": [DMCReacherMPWrapper],
"mp_kwargs": {
"num_dof": 2,
"num_basis": 5,
"duration": 1,
"width": 0.025,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_reacher-hard_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": f"reacher-hard",
"time_limit": 1,
"episode_length": 50,
"wrappers": [DMCReacherMPWrapper],
"mp_kwargs": {
"num_dof": 2,
"num_basis": 5,
"duration": 1,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_reacher-hard_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"reacher-hard",
"time_limit": 1,
"episode_length": 50,
"wrappers": [DMCReacherMPWrapper],
"mp_kwargs": {
"num_dof": 2,
"num_basis": 5,
"duration": 1,
"width": 0.025,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-balance_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": f"cartpole-balance",
# "time_limit": 1,
"episode_length": 1000,
"wrappers": [DMCCartpoleMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-balance_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"cartpole-balance",
# "time_limit": 1,
"episode_length": 1000,
"wrappers": [DMCCartpoleMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"width": 0.025,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-balance_sparse_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": f"cartpole-balance_sparse",
# "time_limit": 1,
"episode_length": 1000,
"wrappers": [DMCCartpoleMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-balance_sparse_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"cartpole-balance_sparse",
# "time_limit": 1,
"episode_length": 1000,
"wrappers": [DMCCartpoleMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"width": 0.025,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-swingup_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": f"cartpole-swingup",
# "time_limit": 1,
"episode_length": 1000,
"wrappers": [DMCCartpoleMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-swingup_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"cartpole-swingup",
# "time_limit": 1,
"episode_length": 1000,
"wrappers": [DMCCartpoleMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"width": 0.025,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-swingup_sparse_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": f"cartpole-swingup_sparse",
# "time_limit": 1,
"episode_length": 1000,
"wrappers": [DMCCartpoleMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-swingup_sparse_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"cartpole-swingup_sparse",
# "time_limit": 1,
"episode_length": 1000,
"wrappers": [DMCCartpoleMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"width": 0.025,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-two_poles_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": f"cartpole-two_poles",
# "time_limit": 1,
"episode_length": 1000,
# "wrappers": [partial(DMCCartpoleMPWrapper, n_poles=2)],
"wrappers": [DMCCartpoleTwoPolesMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-two_poles_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"cartpole-two_poles",
# "time_limit": 1,
"episode_length": 1000,
# "wrappers": [partial(DMCCartpoleMPWrapper, n_poles=2)],
"wrappers": [DMCCartpoleTwoPolesMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"width": 0.025,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-three_poles_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": f"cartpole-three_poles",
# "time_limit": 1,
"episode_length": 1000,
# "wrappers": [partial(DMCCartpoleMPWrapper, n_poles=3)],
"wrappers": [DMCCartpoleThreePolesMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
register(
id=f'dmc_cartpole-three_poles_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"cartpole-three_poles",
# "time_limit": 1,
"episode_length": 1000,
# "wrappers": [partial(DMCCartpoleMPWrapper, n_poles=3)],
"wrappers": [DMCCartpoleThreePolesMPWrapper],
"mp_kwargs": {
"num_dof": 1,
"num_basis": 5,
"duration": 10,
"width": 0.025,
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"policy_kwargs": {
"p_gains": 50,
"d_gains": 1
}
}
}
)
### Manipulation
register(
id=f'dmc_manipulation-reach_site_dmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
# max_episode_steps=1,
kwargs={
"name": f"manipulation-reach_site_features",
# "time_limit": 1,
"episode_length": 250,
"wrappers": [DMCReachSiteMPWrapper],
"mp_kwargs": {
"num_dof": 9,
"num_basis": 5,
"duration": 10,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "velocity",
"weights_scale": 50,
"goal_scale": 0.1,
}
}
)
register(
id=f'dmc_manipulation-reach_site_detpmp-v0',
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
kwargs={
"name": f"manipulation-reach_site_features",
# "time_limit": 1,
"episode_length": 250,
"wrappers": [DMCReachSiteMPWrapper],
"mp_kwargs": {
"num_dof": 9,
"num_basis": 5,
"duration": 10,
"width": 0.025,
"policy_type": "velocity",
"weights_scale": 0.2,
"zero_start": True,
}
}
)

View File

@ -128,7 +128,7 @@ class HoleReacherEnv(gym.Env):
width = np.copy(self.initial_width)
if self.initial_x is None:
# sample whole on left or right side
direction = np.random.choice([-1, 1])
direction = self.np_random.choice([-1, 1])
# Hole center needs to be half the width away from the arm to give a valid setting.
x = direction * self.np_random.uniform(width / 2, 3.5)
else:
@ -263,7 +263,7 @@ class HoleReacherEnv(gym.Env):
self.fig.show()
self.fig.gca().set_title(
f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
f"Iteration: {self._steps}, distance: {np.linalg.norm(self.end_effector - self._goal) ** 2}")
if mode == "human":

View File

@ -0,0 +1,38 @@
from typing import Tuple, Union
import numpy as np
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
class DMCReachSiteMPWrapper(MPEnvWrapper):
@property
def active_obs(self):
# Joint and target positions are randomized, velocities are always set to 0.
return np.hstack([
[True] * 3, # target position
[True] * 12, # sin/cos arm joint position
[True] * 6, # arm joint torques
[False] * 6, # arm joint velocities
[True] * 3, # sin/cos hand joint position
[False] * 3, # hand joint velocities
[True] * 3, # hand pinch site position
[True] * 9, # pinch site rmat
])
@property
def current_pos(self) -> Union[float, int, np.ndarray]:
return self.env.physics.named.data.qpos[:]
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.env.physics.named.data.qvel[:]
@property
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
@property
def dt(self) -> Union[float, int]:
return self.env.dt

View File

View File

@ -19,11 +19,11 @@ class DMCBallInCupMPWrapper(MPEnvWrapper):
@property
def current_pos(self) -> Union[float, int, np.ndarray]:
return np.hstack([self.physics.named.data.qpos['cup_x'], self.physics.named.data.qpos['cup_z']])
return np.hstack([self.env.physics.named.data.qpos['cup_x'], self.env.physics.named.data.qpos['cup_z']])
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return np.hstack([self.physics.named.data.qvel['cup_x'], self.physics.named.data.qvel['cup_z']])
return np.hstack([self.env.physics.named.data.qvel['cup_x'], self.env.physics.named.data.qvel['cup_z']])
@property
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:

View File

View File

@ -0,0 +1,33 @@
from typing import Tuple, Union
import numpy as np
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
class DMCReacherMPWrapper(MPEnvWrapper):
@property
def active_obs(self):
# Joint and target positions are randomized, velocities are always set to 0.
return np.hstack([
[True] * 2, # joint position
[True] * 2, # target position
[False] * 2, # joint velocity
])
@property
def current_pos(self) -> Union[float, int, np.ndarray]:
return self.env.physics.named.data.qpos[:]
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.env.physics.named.data.qvel[:]
@property
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
@property
def dt(self) -> Union[float, int]:
return self.env.dt

View File

@ -1,4 +1,4 @@
from alr_envs.dmc.ball_in_cup.ball_in_the_cup_mp_wrapper import DMCBallInCupMPWrapper
from alr_envs.dmc.suite.ball_in_cup.ball_in_cup_mp_wrapper import DMCBallInCupMPWrapper
from alr_envs.utils.make_env_helpers import make_dmp_env, make_env
@ -123,11 +123,11 @@ if __name__ == '__main__':
render = False
# # Standard DMC Suite tasks
# example_dmc("fish-swim", seed=10, iterations=1000, render=render)
#
# # Manipulation tasks
# # Disclaimer: The vision versions are currently not integrated and yield an error
# example_dmc("manipulation-reach_site_features", seed=10, iterations=250, render=render)
example_dmc("fish-swim", seed=10, iterations=1000, render=render)
# Manipulation tasks
# Disclaimer: The vision versions are currently not integrated and yield an error
example_dmc("manipulation-reach_site_features", seed=10, iterations=250, render=render)
# Gym + DMC hybrid task provided in the MP framework
example_dmc("dmc_ball_in_cup-catch_detpmp-v0", seed=10, iterations=1, render=render)

View File

@ -86,17 +86,18 @@ def example_async(env_id="alr_envs:HoleReacher-v0", n_cpu=4, seed=int('533D', 16
if __name__ == '__main__':
render = False
# Basic gym task
example_general("Pendulum-v0", seed=10, iterations=200, render=True)
example_general("Pendulum-v0", seed=10, iterations=200, render=render)
#
# # Basis task from framework
example_general("alr_envs:HoleReacher-v0", seed=10, iterations=200, render=True)
example_general("alr_envs:HoleReacher-v0", seed=10, iterations=200, render=render)
#
# # OpenAI Mujoco task
example_general("HalfCheetah-v2", seed=10, render=True)
example_general("HalfCheetah-v2", seed=10, render=render)
#
# # Mujoco task from framework
example_general("alr_envs:ALRReacher-v0", seed=10, iterations=200, render=True)
example_general("alr_envs:ALRReacher-v0", seed=10, iterations=200, render=render)
# Vectorized multiprocessing environments
example_async(env_id="alr_envs:HoleReacher-v0", n_cpu=2, seed=int('533D', 16), n_samples=2 * 200)

View File

@ -148,14 +148,15 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
if __name__ == '__main__':
render = False
# DMP
example_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=True)
example_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=render)
# DetProMP
example_mp("alr_envs:HoleReacherDetPMP-v1", seed=10, iterations=1, render=True)
example_mp("alr_envs:HoleReacherDetPMP-v1", seed=10, iterations=1, render=render)
# Altered basis functions
example_custom_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=True)
example_custom_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=render)
# Custom MP
example_fully_custom_mp(seed=10, iterations=1, render=True)
example_fully_custom_mp(seed=10, iterations=1, render=render)

View File

@ -1,4 +1,4 @@
from alr_envs.mujoco.reacher.alr_reacher import ALRReacherEnv
from alr_envs.mujoco.balancing import BalancingEnv
# from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
from alr_envs.mujoco.reacher.balancing import BalancingEnv
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
from alr_envs.mujoco.ball_in_a_cup.biac_pd import ALRBallInACupPDEnv

View File

@ -1 +0,0 @@
from alr_envs.stochastic_search.stochastic_search import StochasticSearchEnv

View File

@ -1,76 +0,0 @@
import numpy as np
import scipy.stats as scistats
np.seterr(divide='ignore', invalid='ignore')
class BaseObjective(object):
def __init__(self, dim, int_opt=None, val_opt=None, alpha=None, beta=None):
self.dim = dim
self.alpha = alpha
self.beta = beta
# check if optimal parameter is in interval...
if int_opt is not None:
self.x_opt = np.random.uniform(int_opt[0], int_opt[1], size=(1, dim))
# ... or based on a single value
elif val_opt is not None:
self.one_pm = np.where(np.random.rand(1, dim) > 0.5, 1, -1)
self.x_opt = val_opt * self.one_pm
else:
raise ValueError("Optimal value or interval has to be defined")
self.f_opt = np.round(np.clip(scistats.cauchy.rvs(loc=0, scale=100, size=1)[0], -1000, 1000), decimals=2)
self.i = np.arange(self.dim)
self._lambda_alpha = None
self._q = None
self._r = None
def __call__(self, x):
return self.evaluate_full(x)
def evaluate_full(self, x):
raise NotImplementedError("Subclasses should implement this!")
def gs(self):
# Gram Schmidt ortho-normalization
a = np.random.randn(self.dim, self.dim)
b, _ = np.linalg.qr(a)
return b
# TODO: property probably unnecessary
@property
def q(self):
if self._q is None:
self._q = self.gs()
return self._q
@property
def r(self):
if self._r is None:
self._r = self.gs()
return self._r
@property
def lambda_alpha(self):
if self._lambda_alpha is None:
if isinstance(self.alpha, int):
lambda_ii = np.power(self.alpha, 1 / 2 * self.i / (self.dim - 1))
self._lambda_alpha = np.diag(lambda_ii)
else:
lambda_ii = np.power(self.alpha[:, None], 1 / 2 * self.i[None, :] / (self.dim - 1))
self._lambda_alpha = np.stack([np.diag(l_ii) for l_ii in lambda_ii])
return self._lambda_alpha
@staticmethod
def f_pen(x):
return np.sum(np.maximum(0, np.abs(x) - 5), axis=1)
def t_asy_beta(self, x):
# exp = np.power(x, 1 + self.beta * self.i[:, None] / (self.input_dim - 1) * np.sqrt(x))
# return np.where(x > 0, exp, x)
return x
def t_osz(self, x):
x_hat = np.where(x != 0, np.log(np.abs(x)), 0)
c_1 = np.where(x > 0, 10, 5.5)
c_2 = np.where(x > 0, 7.9, 3.1)
return np.sign(x) * np.exp(x_hat + 0.049 * (np.sin(c_1 * x_hat) + np.sin(c_2 * x_hat)))

View File

@ -1,56 +0,0 @@
import numpy as np
from alr_envs.stochastic_search.functions.f_base import BaseObjective
class Rosenbrock(BaseObjective):
def __init__(self, dim, int_opt=(-3., 3.)):
super(Rosenbrock, self).__init__(dim, int_opt=int_opt)
self.c = np.maximum(1, np.sqrt(self.dim) / 8)
def evaluate_full(self, x):
x = np.atleast_2d(x)
assert x.shape[1] == self.dim
z = self.c * (x - self.x_opt) + 1
z_end = z[:, 1:]
z_begin = z[:, :-1]
a = z_begin ** 2 - z_end
b = z_begin - 1
return np.sum(100 * a ** 2 + b ** 2, axis=1) + self.f_opt
class RosenbrockRotated(BaseObjective):
def __init__(self, dim, int_opt=(-3., 3.)):
super(RosenbrockRotated, self).__init__(dim, int_opt=int_opt)
self.c = np.maximum(1, np.sqrt(self.dim) / 8)
def evaluate_full(self, x):
x = np.atleast_2d(x)
assert x.shape[1] == self.dim
z = (self.c * self.r @ x.T + 1 / 2).T
a = z[:, :-1] ** 2 - z[:, 1:]
b = z[:, :-1] - 1
return np.sum(100 * a ** 2 + b ** 2, axis=1) + self.f_opt
class RosenbrockRaw(BaseObjective):
def __init__(self, dim, int_opt=(-3., 3.)):
super(RosenbrockRaw, self).__init__(dim, int_opt=int_opt)
self.x_opt = np.ones((1, dim))
self.f_opt = 0
def evaluate_full(self, x):
x = np.atleast_2d(x)
assert x.shape[1] == self.dim
a = x[:, :-1] ** 2 - x[:, 1:]
b = x[:, :-1] - 1
out = np.sum(100 * a ** 2 + b ** 2, axis=1)
return out

View File

@ -1,22 +0,0 @@
import gym
import numpy as np
from alr_envs.stochastic_search.functions.f_base import BaseObjective
class StochasticSearchEnv(gym.Env):
def __init__(self, cost_f: BaseObjective):
self.cost_f = cost_f
self.action_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(self.cost_f.dim,), dtype=np.float64)
self.observation_space = gym.spaces.Box(low=(), high=(), shape=(), dtype=np.float64)
def step(self, action):
return np.zeros(self.observation_space.shape), np.squeeze(-self.cost_f(action)), True, {}
def reset(self):
return np.zeros(self.observation_space.shape)
def render(self, mode='human'):
pass

View File

@ -49,6 +49,8 @@ def make_env(env_id: str, seed, **kwargs):
# Gym
env = gym.make(env_id, **kwargs)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
except gym.error.Error:
# DMC
from alr_envs.utils import make
@ -79,7 +81,7 @@ def _make_wrapped_env(env_id: str, wrappers: Iterable[Type[gym.Wrapper]], seed=1
_env = make_env(env_id, seed, **kwargs)
assert any(issubclass(w, MPEnvWrapper) for w in wrappers), \
"At least an MPEnvWrapper is required in order to leverage motion primitive environments."
"At least one MPEnvWrapper is required in order to leverage motion primitive environments."
for w in wrappers:
_env = w(_env)

View File

@ -17,5 +17,6 @@ setup(
license='MIT',
author='Fabian Otto, Marcel Sandermann, Maximilian Huettenrauch',
author_email='',
description='Custom Gym environments for various (robotics) simple_reacher.'
description='Custom Gym environments for various (robotics) tasks. integration of DMC environments into the'
'gym interface, and support for using motion primitives with gym environments.'
)