reacher envs cleanup
- base classes for direct and torque control - added promp wrapper support
This commit is contained in:
parent
928c540251
commit
2543bcd7ec
@ -83,7 +83,7 @@ register(
|
||||
|
||||
register(
|
||||
id='HoleReacher-v1',
|
||||
entry_point='alr_envs.alr.classic_control:HoleReacherEnvOld',
|
||||
entry_point='alr_envs.alr.classic_control:HoleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
@ -109,7 +109,7 @@ register(
|
||||
"hole_width": 0.25,
|
||||
"hole_depth": 1,
|
||||
"hole_x": 2,
|
||||
"collision_penalty": 100,
|
||||
"collision_penalty": 1,
|
||||
}
|
||||
)
|
||||
|
||||
@ -220,6 +220,25 @@ for _v in _versions:
|
||||
)
|
||||
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["DMP"].append(_env_id)
|
||||
|
||||
_env_id = f'{_name[0]}ProMP-{_name[1]}'
|
||||
register(
|
||||
id=_env_id,
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper',
|
||||
kwargs={
|
||||
"name": f"alr_envs:{_v}",
|
||||
"wrappers": [classic_control.simple_reacher.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 2 if "long" not in _v.lower() else 5,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"policy_type": "motor",
|
||||
"weights_scale": 1,
|
||||
"zero_start": True
|
||||
}
|
||||
}
|
||||
)
|
||||
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id)
|
||||
|
||||
_env_id = f'{_name[0]}DetPMP-{_name[1]}'
|
||||
register(
|
||||
id=_env_id,
|
||||
@ -262,6 +281,24 @@ register(
|
||||
)
|
||||
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["DMP"].append("ViaPointReacherDMP-v0")
|
||||
|
||||
register(
|
||||
id="ViaPointReacherProMP-v0",
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper',
|
||||
kwargs={
|
||||
"name": f"alr_envs:ViaPointReacher-v0",
|
||||
"wrappers": [classic_control.viapoint_reacher.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 5,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"policy_type": "motor",
|
||||
"weights_scale": 1,
|
||||
"zero_start": True
|
||||
}
|
||||
}
|
||||
)
|
||||
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append("ViaPointReacherProMP-v0")
|
||||
|
||||
register(
|
||||
id='ViaPointReacherDetPMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
|
141
alr_envs/alr/classic_control/base_reacher/base_reacher.py
Normal file
141
alr_envs/alr/classic_control/base_reacher/base_reacher.py
Normal file
@ -0,0 +1,141 @@
|
||||
from typing import Iterable, Union
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from alr_envs.alr.classic_control.utils import intersect
|
||||
|
||||
|
||||
class BaseReacherEnv(gym.Env):
|
||||
"""
|
||||
Base class for all reaching environments.
|
||||
"""
|
||||
|
||||
def __init__(self, n_links: int, random_start: bool = True,
|
||||
allow_self_collision: bool = False):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
self._dt = 0.01
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._acc = None
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
# joint limits
|
||||
self.j_min = -np.pi * np.ones(n_links)
|
||||
self.j_max = np.pi * np.ones(n_links)
|
||||
|
||||
self.steps_before_reward = 199
|
||||
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
|
||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
self.reward_function = None # Needs to be set in sub class
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def reset(self):
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
@abstractmethod
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with action in angular velocity space
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update joints to get new end-effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
angles = np.cumsum(self._joint_angles)
|
||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||
|
||||
def _check_self_collision(self):
|
||||
"""Checks whether line segments intersect"""
|
||||
|
||||
if np.any(self._joint_angles > self.j_max) or np.any(self._joint_angles < self.j_min):
|
||||
return True
|
||||
|
||||
link_lines = np.stack((self._joints[:-1, :], self._joints[1:, :]), axis=1)
|
||||
for i, line1 in enumerate(link_lines):
|
||||
for line2 in link_lines[i + 2:, :]:
|
||||
if intersect(line1[0], line1[-1], line2[0], line2[-1]):
|
||||
return True
|
||||
return False
|
||||
|
||||
@abstractmethod
|
||||
def _get_reward(self, action: np.ndarray) -> (float, dict):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_obs(self) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _check_collisions(self) -> bool:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _terminate(self, info) -> bool:
|
||||
return False
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def close(self):
|
||||
del self.fig
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
@ -1,157 +1,35 @@
|
||||
from typing import Iterable, Union
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from alr_envs.alr.classic_control.utils import intersect
|
||||
import numpy as np
|
||||
from alr_envs.alr.classic_control.base_reacher.base_reacher import BaseReacherEnv
|
||||
|
||||
|
||||
class BaseReacherEnv(gym.Env):
|
||||
class BaseReacherDirectEnv(BaseReacherEnv):
|
||||
"""
|
||||
Simple Reaching Task without any physics simulation.
|
||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||
towards the end of the trajectory.
|
||||
Base class for directly controlled reaching environments
|
||||
"""
|
||||
|
||||
def __init__(self, n_links: int, random_start: bool = True,
|
||||
allow_self_collision: bool = False):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
self._dt = 0.01
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
# joint limits
|
||||
self.j_min = -np.pi * np.ones(n_links)
|
||||
self.j_max = np.pi * np.ones(n_links)
|
||||
|
||||
self.max_vel = 1
|
||||
self.steps_before_reward = 199
|
||||
super().__init__(n_links, random_start, allow_self_collision)
|
||||
|
||||
self.max_vel = 10 * np.pi
|
||||
action_bound = np.ones((self.n_links,)) * self.max_vel
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
self.reward_function = None # Needs to be set in sub class
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def reset(self):
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with action in angular velocity space
|
||||
"""
|
||||
|
||||
acc = (action - self._angle_velocity) / self.dt
|
||||
self._acc = (action - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = action
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
|
||||
self._is_collided = self._check_collisions()
|
||||
|
||||
# reward, info = self._get_reward(action)
|
||||
reward, info = self.reward_function.get_reward(self, acc)
|
||||
reward, info = self._get_reward(action)
|
||||
|
||||
self._steps += 1
|
||||
done = self._terminate(info)
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update joints to get new end-effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
angles = np.cumsum(self._joint_angles)
|
||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||
|
||||
def _check_self_collision(self):
|
||||
"""Checks whether line segments intersect"""
|
||||
|
||||
if np.any(self._joint_angles > self.j_max) or np.any(self._joint_angles < self.j_min):
|
||||
return True
|
||||
|
||||
link_lines = np.stack((self._joints[:-1, :], self._joints[1:, :]), axis=1)
|
||||
for i, line1 in enumerate(link_lines):
|
||||
for line2 in link_lines[i + 2:, :]:
|
||||
if intersect(line1[0], line1[-1], line2[0], line2[-1]):
|
||||
return True
|
||||
return False
|
||||
|
||||
@abstractmethod
|
||||
def _get_reward(self, action: np.ndarray) -> (float, dict):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_obs(self) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _check_collisions(self) -> bool:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _terminate(self, info) -> bool:
|
||||
return False
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def close(self):
|
||||
del self.fig
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
@ -1,86 +1,19 @@
|
||||
from typing import Iterable, Union
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
import numpy as np
|
||||
from alr_envs.alr.classic_control.base_reacher.base_reacher import BaseReacherEnv
|
||||
|
||||
|
||||
class BaseReacherEnv(gym.Env):
|
||||
class BaseReacherTorqueEnv(BaseReacherEnv):
|
||||
"""
|
||||
Simple Reaching Task without any physics simulation.
|
||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||
towards the end of the trajectory.
|
||||
Base class for torque controlled reaching environments
|
||||
"""
|
||||
|
||||
def __init__(self, n_links: int, random_start: bool = True,
|
||||
allow_self_collision: bool = False, collision_penalty: float = 1000):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
self._dt = 0.01
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._is_collided = False
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.max_torque = 1
|
||||
self.steps_before_reward = 199
|
||||
allow_self_collision: bool = False):
|
||||
super().__init__(n_links, random_start, allow_self_collision)
|
||||
|
||||
self.max_torque = 1000
|
||||
action_bound = np.ones((self.n_links,)) * self.max_torque
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def reset(self):
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
@ -94,11 +27,6 @@ class BaseReacherEnv(gym.Env):
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
|
||||
self_collision = True
|
||||
|
||||
self._is_collided = self._check_collisions()
|
||||
|
||||
reward, info = self._get_reward(action)
|
||||
@ -107,36 +35,3 @@ class BaseReacherEnv(gym.Env):
|
||||
done = False
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update joints to get new end-effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
angles = np.cumsum(self._joint_angles)
|
||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||
|
||||
@abstractmethod
|
||||
def _get_reward(self, action: np.ndarray) -> (float, dict):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_obs(self) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _check_collisions(self) -> bool:
|
||||
pass
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def close(self):
|
||||
del self.fig
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
@ -3,14 +3,12 @@ from typing import Union
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym.utils import seeding
|
||||
from matplotlib import patches
|
||||
|
||||
from alr_envs.alr.classic_control.base_reacher.base_reacher_direct import BaseReacherEnv
|
||||
from alr_envs.alr.classic_control.utils import check_self_collision
|
||||
from alr_envs.alr.classic_control.base_reacher.base_reacher_direct import BaseReacherDirectEnv
|
||||
|
||||
|
||||
class HoleReacherEnv(BaseReacherEnv):
|
||||
class HoleReacherEnv(BaseReacherDirectEnv):
|
||||
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
|
||||
allow_wall_collision: bool = False, collision_penalty: float = 1000, rew_fct: str = "simple"):
|
||||
@ -28,7 +26,7 @@ class HoleReacherEnv(BaseReacherEnv):
|
||||
self._tmp_depth = None
|
||||
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
|
||||
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
# action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
@ -38,19 +36,25 @@ class HoleReacherEnv(BaseReacherEnv):
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
# self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
if rew_fct == "simple":
|
||||
from alr_envs.alr.classic_control.hole_reacher.simple_reward import HolereacherSimpleReward
|
||||
self.reward_function = HolereacherSimpleReward(allow_self_collision, allow_wall_collision, collision_penalty)
|
||||
from alr_envs.alr.classic_control.hole_reacher.hr_simple_reward import HolereacherReward
|
||||
self.reward_function = HolereacherReward(allow_self_collision, allow_wall_collision, collision_penalty)
|
||||
else:
|
||||
raise ValueError("Unknown reward function {}".format(rew_fct))
|
||||
|
||||
def reset(self):
|
||||
self._generate_hole()
|
||||
self._set_patches()
|
||||
self.reward_function.reset()
|
||||
|
||||
return super().reset()
|
||||
|
||||
def _get_reward(self, action: np.ndarray) -> (float, dict):
|
||||
return self.reward_function.get_reward(self)
|
||||
|
||||
def _terminate(self, info):
|
||||
return info["is_collided"]
|
||||
|
||||
@ -118,10 +122,6 @@ class HoleReacherEnv(BaseReacherEnv):
|
||||
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
|
||||
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
|
||||
|
||||
# xy = np.stack((x, y), axis=2)
|
||||
#
|
||||
# self._joints[0] + np.cumsum(xy, axis=0)
|
||||
|
||||
return np.squeeze(end_effector + self._joints[0, :])
|
||||
|
||||
def check_wall_collision(self):
|
||||
@ -157,36 +157,6 @@ class HoleReacherEnv(BaseReacherEnv):
|
||||
|
||||
return False
|
||||
|
||||
# def check_wall_collision(self, ):
|
||||
# """find the intersection of line segments A=(x1,y1)/(x2,y2) and
|
||||
# B=(x3,y3)/(x4,y4). """
|
||||
#
|
||||
# link_lines = np.hstack((self._joints[:-1, :], self._joints[1:, :]))
|
||||
#
|
||||
# all_points_product = np.hstack(
|
||||
# [np.repeat(link_lines, len(self.ground_lines), axis=0),
|
||||
# np.tile(self.ground_lines, (len(link_lines), 1))])
|
||||
#
|
||||
# x1, y1, x2, y2, x3, y3, x4, y4 = all_points_product.T
|
||||
#
|
||||
# denom = ((x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4))
|
||||
# # if denom == 0:
|
||||
# # return False
|
||||
# px = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / denom
|
||||
# py = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / denom
|
||||
# # if (px - x1) * (px - x2) < 0 and (py - y1) * (py - y2) < 0 \
|
||||
# # and (px - x3) * (px - x4) < 0 and (py - y3) * (py - y4) < 0:
|
||||
# # return True # [px, py]
|
||||
# test = ((px - x1) * (px - x2) <= 0) & ((py - y1) * (py - y2) <= 0) & ((px - x3) * (px - x4) <= 0) & (
|
||||
# (py - y3) * (py - y4) <= 0)
|
||||
# if np.any(test):
|
||||
# possible_collisions = np.stack((px, py)).T[test]
|
||||
# for row in possible_collisions:
|
||||
# if not np.any([np.allclose(row, x) for x in self._joints]):
|
||||
# return True, row
|
||||
#
|
||||
# return False, None
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
@ -242,322 +212,14 @@ class HoleReacherEnv(BaseReacherEnv):
|
||||
self.fig.gca().add_patch(hole_floor)
|
||||
|
||||
|
||||
class HoleReacherEnvOld(gym.Env):
|
||||
|
||||
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
|
||||
allow_wall_collision: bool = False, collision_penalty: float = 1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
# provided initial parameters
|
||||
self.initial_x = hole_x # x-position of center of hole
|
||||
self.initial_width = hole_width # width of hole
|
||||
self.initial_depth = hole_depth # depth of hole
|
||||
|
||||
# temp container for current env state
|
||||
self._tmp_x = None
|
||||
self._tmp_width = None
|
||||
self._tmp_depth = None
|
||||
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.allow_wall_collision = allow_wall_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self._dt = 0.01
|
||||
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf], # hole width
|
||||
# [np.inf], # hole depth
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human", "partial"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
# @property
|
||||
# def start_pos(self):
|
||||
# return self._start_pos
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with an action in joint velocity space
|
||||
"""
|
||||
|
||||
acc = (action - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = action
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity # + 0.001 * np.random.randn(5)
|
||||
self._update_joints()
|
||||
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
info.update({"is_collided": self._is_collided})
|
||||
self.end_effector_traj.append(np.copy(self.end_effector))
|
||||
|
||||
self._steps += 1
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
if self.random_start:
|
||||
# Maybe change more than first seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._generate_hole()
|
||||
self._set_patches()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
self.end_effector_traj = []
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def _generate_hole(self):
|
||||
if self.initial_width is None:
|
||||
width = self.np_random.uniform(0.15, 0.5)
|
||||
else:
|
||||
width = np.copy(self.initial_width)
|
||||
if self.initial_x is None:
|
||||
# sample whole on left or right side
|
||||
direction = self.np_random.choice([-1, 1])
|
||||
# Hole center needs to be half the width away from the arm to give a valid setting.
|
||||
x = direction * self.np_random.uniform(width / 2, 3.5)
|
||||
else:
|
||||
x = np.copy(self.initial_x)
|
||||
if self.initial_depth is None:
|
||||
# TODO we do not want this right now.
|
||||
depth = self.np_random.uniform(1, 1)
|
||||
else:
|
||||
depth = np.copy(self.initial_depth)
|
||||
|
||||
self._tmp_width = width
|
||||
self._tmp_x = x
|
||||
self._tmp_depth = depth
|
||||
self._goal = np.hstack([self._tmp_x, -self._tmp_depth])
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update _joints to get new end effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
line_points_in_taskspace = self._get_forward_kinematics(num_points_per_link=20)
|
||||
|
||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||
|
||||
self_collision = False
|
||||
wall_collision = False
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
|
||||
self_collision = True
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = self._check_wall_collision(line_points_in_taskspace)
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
def _get_reward(self, acc: np.ndarray):
|
||||
reward = 0
|
||||
# success = False
|
||||
|
||||
if self._steps == 199 or self._is_collided:
|
||||
# return reward only in last time step
|
||||
# Episode also terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
# success = dist < 0.005 and not self._is_collided
|
||||
reward = - dist ** 2 - self.collision_penalty * self._is_collided
|
||||
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
# info = {"is_success": success}
|
||||
|
||||
return reward, {} # info
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self._tmp_width,
|
||||
# self._tmp_hole_depth,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
def _get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
|
||||
end_effector[0, :, 0] = x[0, :]
|
||||
end_effector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.n_links):
|
||||
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
|
||||
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(end_effector + self._joints[0, :])
|
||||
|
||||
def _check_wall_collision(self, line_points):
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] < (self._tmp_x - self._tmp_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_before_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are after the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] > (self._tmp_x + self._tmp_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_after_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are above the hole
|
||||
r, c = np.where((line_points[:, :, 0] > (self._tmp_x - self._tmp_width / 2)) & (
|
||||
line_points[:, :, 0] < (self._tmp_x + self._tmp_width / 2)))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_depth)
|
||||
|
||||
if nr_line_points_below_surface_in_hole > 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-1.1, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
self._set_patches()
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(
|
||||
f"Iteration: {self._steps}, distance: {np.linalg.norm(self.end_effector - self._goal) ** 2}")
|
||||
|
||||
if mode == "human":
|
||||
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
|
||||
alpha=self._steps / 200)
|
||||
|
||||
def _set_patches(self):
|
||||
if self.fig is not None:
|
||||
self.fig.gca().patches = []
|
||||
left_block = patches.Rectangle((-self.n_links, -self._tmp_depth),
|
||||
self.n_links + self._tmp_x - self._tmp_width / 2,
|
||||
self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
right_block = patches.Rectangle((self._tmp_x + self._tmp_width / 2, -self._tmp_depth),
|
||||
self.n_links - self._tmp_x + self._tmp_width / 2,
|
||||
self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
hole_floor = patches.Rectangle((self._tmp_x - self._tmp_width / 2, -self._tmp_depth),
|
||||
self._tmp_width,
|
||||
1 - self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
# Add the patch to the Axes
|
||||
self.fig.gca().add_patch(left_block)
|
||||
self.fig.gca().add_patch(right_block)
|
||||
self.fig.gca().add_patch(hole_floor)
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def close(self):
|
||||
super().close()
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import time
|
||||
env = HoleReacherEnv(5)
|
||||
env.reset()
|
||||
|
||||
start = time.time()
|
||||
for i in range(10000):
|
||||
# env.check_wall_collision()
|
||||
ac = env.action_space.sample()
|
||||
obs, rew, done, info = env.step(ac)
|
||||
# env.render()
|
||||
if done:
|
||||
env.reset()
|
||||
print(time.time() - start)
|
||||
|
315
alr_envs/alr/classic_control/hole_reacher/hole_reacher_old.py
Normal file
315
alr_envs/alr/classic_control/hole_reacher/hole_reacher_old.py
Normal file
@ -0,0 +1,315 @@
|
||||
from typing import Union
|
||||
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym.utils import seeding
|
||||
from matplotlib import patches
|
||||
|
||||
from alr_envs.alr.classic_control.base_reacher.base_reacher_direct import BaseReacherDirectEnv
|
||||
from alr_envs.alr.classic_control.utils import check_self_collision
|
||||
|
||||
|
||||
class HoleReacherEnvOld(gym.Env):
|
||||
|
||||
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
|
||||
allow_wall_collision: bool = False, collision_penalty: float = 1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
# provided initial parameters
|
||||
self.initial_x = hole_x # x-position of center of hole
|
||||
self.initial_width = hole_width # width of hole
|
||||
self.initial_depth = hole_depth # depth of hole
|
||||
|
||||
# temp container for current env state
|
||||
self._tmp_x = None
|
||||
self._tmp_width = None
|
||||
self._tmp_depth = None
|
||||
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.allow_wall_collision = allow_wall_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self._dt = 0.01
|
||||
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf], # hole width
|
||||
# [np.inf], # hole depth
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human", "partial"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
# @property
|
||||
# def start_pos(self):
|
||||
# return self._start_pos
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with an action in joint velocity space
|
||||
"""
|
||||
|
||||
acc = (action - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = action
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity # + 0.001 * np.random.randn(5)
|
||||
self._update_joints()
|
||||
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
info.update({"is_collided": self._is_collided})
|
||||
self.end_effector_traj.append(np.copy(self.end_effector))
|
||||
|
||||
self._steps += 1
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
if self.random_start:
|
||||
# Maybe change more than first seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._generate_hole()
|
||||
self._set_patches()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
self.end_effector_traj = []
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def _generate_hole(self):
|
||||
if self.initial_width is None:
|
||||
width = self.np_random.uniform(0.15, 0.5)
|
||||
else:
|
||||
width = np.copy(self.initial_width)
|
||||
if self.initial_x is None:
|
||||
# sample whole on left or right side
|
||||
direction = self.np_random.choice([-1, 1])
|
||||
# Hole center needs to be half the width away from the arm to give a valid setting.
|
||||
x = direction * self.np_random.uniform(width / 2, 3.5)
|
||||
else:
|
||||
x = np.copy(self.initial_x)
|
||||
if self.initial_depth is None:
|
||||
# TODO we do not want this right now.
|
||||
depth = self.np_random.uniform(1, 1)
|
||||
else:
|
||||
depth = np.copy(self.initial_depth)
|
||||
|
||||
self._tmp_width = width
|
||||
self._tmp_x = x
|
||||
self._tmp_depth = depth
|
||||
self._goal = np.hstack([self._tmp_x, -self._tmp_depth])
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update _joints to get new end effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
line_points_in_taskspace = self._get_forward_kinematics(num_points_per_link=20)
|
||||
|
||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||
|
||||
self_collision = False
|
||||
wall_collision = False
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
|
||||
self_collision = True
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = self._check_wall_collision(line_points_in_taskspace)
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
def _get_reward(self, acc: np.ndarray):
|
||||
reward = 0
|
||||
# success = False
|
||||
|
||||
if self._steps == 199 or self._is_collided:
|
||||
# return reward only in last time step
|
||||
# Episode also terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
# success = dist < 0.005 and not self._is_collided
|
||||
reward = - dist ** 2 - self.collision_penalty * self._is_collided
|
||||
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
# info = {"is_success": success}
|
||||
|
||||
return reward, {} # info
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self._tmp_width,
|
||||
# self._tmp_hole_depth,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
def _get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
|
||||
end_effector[0, :, 0] = x[0, :]
|
||||
end_effector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.n_links):
|
||||
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
|
||||
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(end_effector + self._joints[0, :])
|
||||
|
||||
def _check_wall_collision(self, line_points):
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] < (self._tmp_x - self._tmp_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_before_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are after the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] > (self._tmp_x + self._tmp_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_after_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are above the hole
|
||||
r, c = np.where((line_points[:, :, 0] > (self._tmp_x - self._tmp_width / 2)) & (
|
||||
line_points[:, :, 0] < (self._tmp_x + self._tmp_width / 2)))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_depth)
|
||||
|
||||
if nr_line_points_below_surface_in_hole > 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-1.1, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
self._set_patches()
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(
|
||||
f"Iteration: {self._steps}, distance: {np.linalg.norm(self.end_effector - self._goal) ** 2}")
|
||||
|
||||
if mode == "human":
|
||||
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
|
||||
alpha=self._steps / 200)
|
||||
|
||||
def _set_patches(self):
|
||||
if self.fig is not None:
|
||||
self.fig.gca().patches = []
|
||||
left_block = patches.Rectangle((-self.n_links, -self._tmp_depth),
|
||||
self.n_links + self._tmp_x - self._tmp_width / 2,
|
||||
self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
right_block = patches.Rectangle((self._tmp_x + self._tmp_width / 2, -self._tmp_depth),
|
||||
self.n_links - self._tmp_x + self._tmp_width / 2,
|
||||
self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
hole_floor = patches.Rectangle((self._tmp_x - self._tmp_width / 2, -self._tmp_depth),
|
||||
self._tmp_width,
|
||||
1 - self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
# Add the patch to the Axes
|
||||
self.fig.gca().add_patch(left_block)
|
||||
self.fig.gca().add_patch(right_block)
|
||||
self.fig.gca().add_patch(hole_floor)
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def close(self):
|
||||
super().close()
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
@ -0,0 +1,56 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
class HolereacherReward:
|
||||
def __init__(self, allow_self_collision, allow_wall_collision, collision_penalty):
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.allow_wall_collision = allow_wall_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
self._is_collided = False
|
||||
|
||||
self.reward_factors = np.array((-1, -1e-4, -1e-6, -collision_penalty, -1))
|
||||
|
||||
def reset(self):
|
||||
self._is_collided = False
|
||||
|
||||
def get_reward(self, env):
|
||||
dist_cost = 0
|
||||
collision_cost = 0
|
||||
time_cost = 0
|
||||
success = False
|
||||
|
||||
self_collision = False
|
||||
wall_collision = False
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = env._check_self_collision()
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = env.check_wall_collision()
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
if env._steps == 199 or self._is_collided:
|
||||
# return reward only in last time step
|
||||
# Episode also terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(env.end_effector - env._goal)
|
||||
|
||||
success = dist < 0.005 and not self._is_collided
|
||||
dist_cost = int(not self._is_collided) * dist ** 2
|
||||
collision_cost = self._is_collided * dist ** 2
|
||||
time_cost = 199 - env._steps
|
||||
|
||||
info = {"is_success": success,
|
||||
"is_collided": self._is_collided,
|
||||
"end_effector": np.copy(env.end_effector)}
|
||||
|
||||
vel_cost = np.sum(env._angle_velocity ** 2)
|
||||
acc_cost = np.sum(env._acc ** 2)
|
||||
|
||||
reward_features = np.array((dist_cost, vel_cost, acc_cost, collision_cost, time_cost))
|
||||
reward = np.dot(reward_features, self.reward_factors)
|
||||
|
||||
return reward, info
|
@ -1,8 +1,7 @@
|
||||
import numpy as np
|
||||
from alr_envs.alr.classic_control.utils import check_self_collision
|
||||
|
||||
|
||||
class HolereacherSimpleReward:
|
||||
class HolereacherReward:
|
||||
def __init__(self, allow_self_collision, allow_wall_collision, collision_penalty):
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
@ -11,16 +10,20 @@ class HolereacherSimpleReward:
|
||||
self.allow_wall_collision = allow_wall_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
self._is_collided = False
|
||||
pass
|
||||
|
||||
def get_reward(self, env, action):
|
||||
reward = 0
|
||||
self.reward_factors = np.array((-1, -5e-8, -collision_penalty))
|
||||
|
||||
def reset(self):
|
||||
self._is_collided = False
|
||||
|
||||
def get_reward(self, env):
|
||||
dist_cost = 0
|
||||
collision_cost = 0
|
||||
success = False
|
||||
|
||||
self_collision = False
|
||||
wall_collision = False
|
||||
|
||||
# joints = np.hstack((env._joints[:-1, :], env._joints[1:, :]))
|
||||
if not self.allow_self_collision:
|
||||
self_collision = env._check_self_collision()
|
||||
|
||||
@ -33,16 +36,18 @@ class HolereacherSimpleReward:
|
||||
# return reward only in last time step
|
||||
# Episode also terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(env.end_effector - env._goal)
|
||||
dist_cost = dist ** 2
|
||||
collision_cost = int(self._is_collided)
|
||||
|
||||
success = dist < 0.005 and not self._is_collided
|
||||
reward = - dist ** 2 - self.collision_penalty * self._is_collided
|
||||
|
||||
info = {"is_success": success,
|
||||
"is_collided": self._is_collided}
|
||||
"is_collided": self._is_collided,
|
||||
"end_effector": np.copy(env.end_effector)}
|
||||
|
||||
acc = (action - env._angle_velocity) / env.dt
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
acc_cost = np.sum(env._acc ** 2)
|
||||
|
||||
reward_features = np.array((dist_cost, acc_cost, collision_cost))
|
||||
reward = np.dot(reward_features, self.reward_factors)
|
||||
|
||||
return reward, info
|
||||
|
||||
|
@ -1,26 +1,22 @@
|
||||
from typing import Iterable, Union
|
||||
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
|
||||
from alr_envs.alr.classic_control.base_reacher.base_reacher_torque import BaseReacherTorqueEnv
|
||||
|
||||
|
||||
class SimpleReacherEnv(gym.Env):
|
||||
class SimpleReacherEnv(BaseReacherTorqueEnv):
|
||||
"""
|
||||
Simple Reaching Task without any physics simulation.
|
||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||
towards the end of the trajectory.
|
||||
"""
|
||||
|
||||
def __init__(self, n_links: int, target: Union[None, Iterable] = None, random_start: bool = True):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
self._dt = 0.1
|
||||
|
||||
self.random_start = random_start
|
||||
def __init__(self, n_links: int, target: Union[None, Iterable] = None, random_start: bool = True,
|
||||
allow_self_collision: bool = False,):
|
||||
super().__init__(n_links, random_start, allow_self_collision)
|
||||
|
||||
# provided initial parameters
|
||||
self.inital_target = target
|
||||
@ -28,16 +24,10 @@ class SimpleReacherEnv(gym.Env):
|
||||
# temp container for current env state
|
||||
self._goal = None
|
||||
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = np.zeros(self.n_links)
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.max_torque = 1
|
||||
self.steps_before_reward = 199
|
||||
|
||||
action_bound = np.ones((self.n_links,)) * self.max_torque
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
@ -45,84 +35,24 @@ class SimpleReacherEnv(gym.Env):
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
# @property
|
||||
# def start_pos(self):
|
||||
# return self._start_pos
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with action in torque space
|
||||
"""
|
||||
|
||||
# action = self._add_action_noise(action)
|
||||
ac = np.clip(action, -self.max_torque, self.max_torque)
|
||||
|
||||
self._angle_velocity = self._angle_velocity + self.dt * ac
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
|
||||
reward, info = self._get_reward(action)
|
||||
|
||||
self._steps += 1
|
||||
done = False
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
|
||||
# TODO: maybe do initialisation more random?
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
self._joint_angles = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._generate_goal()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update joints to get new end-effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
angles = np.cumsum(self._joint_angles)
|
||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||
return super().reset()
|
||||
|
||||
def _get_reward(self, action: np.ndarray):
|
||||
diff = self.end_effector - self._goal
|
||||
reward_dist = 0
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self._is_collided = self._check_self_collision()
|
||||
|
||||
if self._steps >= self.steps_before_reward:
|
||||
reward_dist -= np.linalg.norm(diff)
|
||||
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
|
||||
@ -132,6 +62,9 @@ class SimpleReacherEnv(gym.Env):
|
||||
reward = reward_dist - reward_ctrl
|
||||
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
|
||||
|
||||
def _terminate(self, info):
|
||||
return False
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
@ -190,13 +123,14 @@ class SimpleReacherEnv(gym.Env):
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def close(self):
|
||||
del self.fig
|
||||
if __name__ == "__main__":
|
||||
env = SimpleReacherEnv(5)
|
||||
env.reset()
|
||||
for i in range(200):
|
||||
ac = env.action_space.sample()
|
||||
obs, rew, done, info = env.step(ac)
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
env.render()
|
||||
if done:
|
||||
break
|
||||
|
@ -6,17 +6,15 @@ import numpy as np
|
||||
from gym.utils import seeding
|
||||
|
||||
from alr_envs.alr.classic_control.utils import check_self_collision
|
||||
from alr_envs.alr.classic_control.base_reacher.base_reacher_direct import BaseReacherDirectEnv
|
||||
|
||||
|
||||
class ViaPointReacherEnv(gym.Env):
|
||||
class ViaPointReacherEnv(BaseReacherDirectEnv):
|
||||
|
||||
def __init__(self, n_links, random_start: bool = False, via_target: Union[None, Iterable] = None,
|
||||
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
self.random_start = random_start
|
||||
super().__init__(n_links, random_start, allow_self_collision)
|
||||
|
||||
# provided initial parameters
|
||||
self.intitial_target = target # provided target value
|
||||
@ -30,17 +28,6 @@ class ViaPointReacherEnv(gym.Env):
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
self.weight_matrix_scale = 1
|
||||
|
||||
self._dt = 0.01
|
||||
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
@ -49,69 +36,15 @@ class ViaPointReacherEnv(gym.Env):
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human", "partial"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self):
|
||||
return self._dt
|
||||
|
||||
# @property
|
||||
# def start_pos(self):
|
||||
# return self._start_pos
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
a single step with an action in joint velocity space
|
||||
"""
|
||||
vel = action
|
||||
self._angle_velocity = vel
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
info.update({"is_collided": self._is_collided})
|
||||
|
||||
self._steps += 1
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
|
||||
if self.random_start:
|
||||
# Maybe change more than dirst seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._generate_goal()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
return super().reset()
|
||||
|
||||
def _generate_goal(self):
|
||||
# TODO: Maybe improve this later, this can yield quite a lot of invalid settings
|
||||
@ -137,29 +70,13 @@ class ViaPointReacherEnv(gym.Env):
|
||||
self._via_point = via_target
|
||||
self._goal = goal
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update _joints to get new end effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
|
||||
|
||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||
|
||||
self_collision = False
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi):
|
||||
self_collision = True
|
||||
|
||||
self._is_collided = self_collision
|
||||
|
||||
def _get_reward(self, acc):
|
||||
success = False
|
||||
reward = -np.inf
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self._is_collided = self._check_self_collision()
|
||||
|
||||
if not self._is_collided:
|
||||
dist = np.inf
|
||||
# return intermediate reward for via point
|
||||
@ -177,10 +94,15 @@ class ViaPointReacherEnv(gym.Env):
|
||||
|
||||
reward -= dist ** 2
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
info = {"is_success": success}
|
||||
info = {"is_success": success,
|
||||
"is_collided": self._is_collided,
|
||||
"end_effector": np.copy(env.end_effector)}
|
||||
|
||||
return reward, info
|
||||
|
||||
def _terminate(self, info):
|
||||
return info["is_collided"]
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
@ -192,27 +114,6 @@ class ViaPointReacherEnv(gym.Env):
|
||||
self._steps
|
||||
])
|
||||
|
||||
def get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
|
||||
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
|
||||
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
|
||||
endeffector[0, :, 0] = x[0, :]
|
||||
endeffector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.n_links):
|
||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(endeffector + self._joints[0, :])
|
||||
|
||||
def render(self, mode='human'):
|
||||
goal_pos = self._goal.T
|
||||
via_pos = self._via_point.T
|
||||
@ -281,14 +182,14 @@ class ViaPointReacherEnv(gym.Env):
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
if __name__ == "__main__":
|
||||
import time
|
||||
env = ViaPointReacherEnv(5)
|
||||
env.reset()
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def close(self):
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
||||
for i in range(10000):
|
||||
ac = env.action_space.sample()
|
||||
obs, rew, done, info = env.step(ac)
|
||||
env.render()
|
||||
if done:
|
||||
env.reset()
|
||||
|
@ -149,16 +149,16 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
|
||||
if __name__ == '__main__':
|
||||
render = False
|
||||
# DMP
|
||||
# example_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=10, render=render)
|
||||
example_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=10, render=render)
|
||||
|
||||
# ProMP
|
||||
# example_mp("alr_envs:HoleReacherProMP-v1", seed=10, iterations=100, render=render)
|
||||
example_mp("alr_envs:HoleReacherProMP-v1", seed=10, iterations=100, render=render)
|
||||
|
||||
# DetProMP
|
||||
example_mp("alr_envs:HoleReacherDetPMP-v1", seed=10, iterations=100, render=render)
|
||||
|
||||
# Altered basis functions
|
||||
# example_custom_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=render)
|
||||
example_custom_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=render)
|
||||
|
||||
# Custom MP
|
||||
# example_fully_custom_mp(seed=10, iterations=1, render=render)
|
||||
example_fully_custom_mp(seed=10, iterations=1, render=render)
|
||||
|
Loading…
Reference in New Issue
Block a user