Merge pull request #2 from 1nf0rmagician/positional_env
Seperate required interface for the PD controller and update it
This commit is contained in:
commit
362d2cf24f
@ -1,3 +1,4 @@
|
|||||||
|
import numpy as np
|
||||||
from gym.envs.registration import register
|
from gym.envs.registration import register
|
||||||
|
|
||||||
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
||||||
@ -321,7 +322,9 @@ register(
|
|||||||
"bandwidth_factor": 2.5,
|
"bandwidth_factor": 2.5,
|
||||||
"policy_type": "motor",
|
"policy_type": "motor",
|
||||||
"weights_scale": 100,
|
"weights_scale": 100,
|
||||||
"return_to_start": True
|
"return_to_start": True,
|
||||||
|
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
||||||
|
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -339,7 +342,9 @@ register(
|
|||||||
"bandwidth_factor": 2.5,
|
"bandwidth_factor": 2.5,
|
||||||
"policy_type": "motor",
|
"policy_type": "motor",
|
||||||
"weights_scale": 100,
|
"weights_scale": 100,
|
||||||
"return_to_start": True
|
"return_to_start": True,
|
||||||
|
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
||||||
|
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -357,7 +362,9 @@ register(
|
|||||||
"policy_type": "motor",
|
"policy_type": "motor",
|
||||||
"weights_scale": 0.2,
|
"weights_scale": 0.2,
|
||||||
"zero_start": True,
|
"zero_start": True,
|
||||||
"zero_goal": True
|
"zero_goal": True,
|
||||||
|
"p_gains": np.array([4./3., 2.4, 2.5, 5./3., 2., 2., 1.25]),
|
||||||
|
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -374,7 +381,9 @@ register(
|
|||||||
"policy_type": "motor",
|
"policy_type": "motor",
|
||||||
"weights_scale": 0.2,
|
"weights_scale": 0.2,
|
||||||
"zero_start": True,
|
"zero_start": True,
|
||||||
"zero_goal": True
|
"zero_goal": True,
|
||||||
|
"p_gains": np.array([4./3., 2.4, 2.5, 5./3., 2., 2., 1.25]),
|
||||||
|
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -392,7 +401,9 @@ register(
|
|||||||
"bandwidth_factor": 2.5,
|
"bandwidth_factor": 2.5,
|
||||||
"policy_type": "motor",
|
"policy_type": "motor",
|
||||||
"weights_scale": 50,
|
"weights_scale": 50,
|
||||||
"goal_scale": 0.1
|
"goal_scale": 0.1,
|
||||||
|
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
||||||
|
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -7,7 +7,7 @@ from gym.utils import seeding
|
|||||||
from matplotlib import patches
|
from matplotlib import patches
|
||||||
|
|
||||||
from alr_envs.classic_control.utils import check_self_collision
|
from alr_envs.classic_control.utils import check_self_collision
|
||||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
from alr_envs.utils.mps.alr_env import AlrEnv
|
||||||
|
|
||||||
|
|
||||||
class HoleReacherEnv(AlrEnv):
|
class HoleReacherEnv(AlrEnv):
|
||||||
|
@ -5,7 +5,7 @@ import numpy as np
|
|||||||
from gym import spaces
|
from gym import spaces
|
||||||
from gym.utils import seeding
|
from gym.utils import seeding
|
||||||
|
|
||||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
from alr_envs.utils.mps.alr_env import AlrEnv
|
||||||
|
|
||||||
|
|
||||||
class SimpleReacherEnv(AlrEnv):
|
class SimpleReacherEnv(AlrEnv):
|
||||||
|
@ -6,7 +6,7 @@ import numpy as np
|
|||||||
from gym.utils import seeding
|
from gym.utils import seeding
|
||||||
|
|
||||||
from alr_envs.classic_control.utils import check_self_collision
|
from alr_envs.classic_control.utils import check_self_collision
|
||||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
from alr_envs.utils.mps.alr_env import AlrEnv
|
||||||
|
|
||||||
|
|
||||||
class ViaPointReacher(AlrEnv):
|
class ViaPointReacher(AlrEnv):
|
||||||
|
@ -7,7 +7,9 @@ from gym import error, spaces
|
|||||||
from gym.utils import seeding
|
from gym.utils import seeding
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from os import path
|
from os import path
|
||||||
import gym
|
|
||||||
|
from alr_envs.utils.mps.alr_env import AlrEnv
|
||||||
|
from alr_envs.utils.positional_env import PositionalEnv
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import mujoco_py
|
import mujoco_py
|
||||||
@ -33,7 +35,7 @@ def convert_observation_to_space(observation):
|
|||||||
return space
|
return space
|
||||||
|
|
||||||
|
|
||||||
class AlrMujocoEnv(gym.Env):
|
class AlrMujocoEnv(PositionalEnv, AlrEnv):
|
||||||
"""
|
"""
|
||||||
Superclass for all MuJoCo environments.
|
Superclass for all MuJoCo environments.
|
||||||
"""
|
"""
|
||||||
@ -44,7 +46,7 @@ class AlrMujocoEnv(gym.Env):
|
|||||||
Args:
|
Args:
|
||||||
model_path: path to xml file
|
model_path: path to xml file
|
||||||
n_substeps: how many steps mujoco does per call to env.step
|
n_substeps: how many steps mujoco does per call to env.step
|
||||||
use_servo: use actuator defined in xml, use False for direct torque control
|
apply_gravity_comp: Whether gravity compensation should be active
|
||||||
"""
|
"""
|
||||||
if model_path.startswith("/"):
|
if model_path.startswith("/"):
|
||||||
fullpath = model_path
|
fullpath = model_path
|
||||||
@ -73,10 +75,6 @@ class AlrMujocoEnv(gym.Env):
|
|||||||
|
|
||||||
self._set_action_space()
|
self._set_action_space()
|
||||||
|
|
||||||
# action = self.action_space.sample()
|
|
||||||
# observation, _reward, done, _info = self.step(action)
|
|
||||||
# assert not done
|
|
||||||
|
|
||||||
observation = self._get_obs() # TODO: is calling get_obs enough? should we call reset, or even step?
|
observation = self._get_obs() # TODO: is calling get_obs enough? should we call reset, or even step?
|
||||||
|
|
||||||
self._set_observation_space(observation)
|
self._set_observation_space(observation)
|
||||||
@ -204,7 +202,7 @@ class AlrMujocoEnv(gym.Env):
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
self.sim.step()
|
self.sim.step()
|
||||||
except mujoco_py.builder.MujocoException as e:
|
except mujoco_py.builder.MujocoException:
|
||||||
error_in_sim = True
|
error_in_sim = True
|
||||||
|
|
||||||
return error_in_sim
|
return error_in_sim
|
||||||
|
@ -16,8 +16,6 @@ class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
|||||||
self._q_vel = []
|
self._q_vel = []
|
||||||
# self.weight_matrix_scale = 50
|
# self.weight_matrix_scale = 50
|
||||||
self.max_ctrl = np.array([150., 125., 40., 60., 5., 5., 2.])
|
self.max_ctrl = np.array([150., 125., 40., 60., 5., 5., 2.])
|
||||||
self.p_gains = 1 / self.max_ctrl * np.array([200, 300, 100, 100, 10, 10, 2.5])
|
|
||||||
self.d_gains = 1 / self.max_ctrl * np.array([7, 15, 5, 2.5, 0.3, 0.3, 0.05])
|
|
||||||
|
|
||||||
self.j_min = np.array([-2.6, -1.985, -2.8, -0.9, -4.55, -1.5707, -2.7])
|
self.j_min = np.array([-2.6, -1.985, -2.8, -0.9, -4.55, -1.5707, -2.7])
|
||||||
self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7])
|
self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7])
|
||||||
|
@ -1,14 +1,13 @@
|
|||||||
from abc import abstractmethod
|
from abc import abstractmethod, ABC
|
||||||
from typing import Union
|
from typing import Union
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class AlrEnv(gym.Env):
|
class AlrEnv(gym.Env, ABC):
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@abstractmethod
|
|
||||||
def active_obs(self):
|
def active_obs(self):
|
||||||
"""Returns boolean mask for each observation entry
|
"""Returns boolean mask for each observation entry
|
||||||
whether the observation is returned for the contextual case or not.
|
whether the observation is returned for the contextual case or not.
|
||||||
@ -31,3 +30,11 @@ class AlrEnv(gym.Env):
|
|||||||
By default this returns the starting position.
|
By default this returns the starting position.
|
||||||
"""
|
"""
|
||||||
return self.start_pos
|
return self.start_pos
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def dt(self) -> Union[float, int]:
|
||||||
|
"""
|
||||||
|
Returns the time between two simulated steps of the environment
|
||||||
|
"""
|
||||||
|
raise NotImplementedError()
|
@ -2,29 +2,36 @@ import gym
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from mp_lib import det_promp
|
from mp_lib import det_promp
|
||||||
|
|
||||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
from alr_envs.utils.mps.alr_env import AlrEnv
|
||||||
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||||
|
|
||||||
|
|
||||||
class DetPMPWrapper(MPWrapper):
|
class DetPMPWrapper(MPWrapper):
|
||||||
def __init__(self, env: AlrEnv, num_dof: int, num_basis: int, width: float, duration: float = 1, dt: float = 0.01,
|
def __init__(self, env: AlrEnv, num_dof, num_basis, width, start_pos=None, duration=1, post_traj_time=0.,
|
||||||
post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
|
policy_type=None, weights_scale=1, zero_start=False, zero_goal=False, learn_mp_length: bool =True,
|
||||||
zero_start: bool = False, zero_goal: bool = False, **mp_kwargs):
|
**mp_kwargs):
|
||||||
self.duration = duration # seconds
|
self.duration = duration # seconds
|
||||||
|
|
||||||
dt = env.dt if hasattr(env, "dt") else dt
|
super().__init__(env=env, num_dof=num_dof, duration=duration, post_traj_time=post_traj_time,
|
||||||
assert dt is not None
|
policy_type=policy_type, weights_scale=weights_scale, num_basis=num_basis,
|
||||||
self.dt = dt
|
width=width, zero_start=zero_start, zero_goal=zero_goal,
|
||||||
|
**mp_kwargs)
|
||||||
|
|
||||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, num_basis=num_basis,
|
self.learn_mp_length = learn_mp_length
|
||||||
width=width, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
|
if self.learn_mp_length:
|
||||||
|
parameter_space_shape = (1+num_basis*num_dof,)
|
||||||
|
else:
|
||||||
|
parameter_space_shape = (num_basis * num_dof,)
|
||||||
|
self.min_param = -np.inf
|
||||||
|
self.max_param = np.inf
|
||||||
|
self.parameterization_space = gym.spaces.Box(low=self.min_param, high=self.max_param,
|
||||||
|
shape=parameter_space_shape, dtype=np.float32)
|
||||||
|
|
||||||
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
|
self.start_pos = start_pos
|
||||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
|
||||||
|
|
||||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, width: float = None,
|
def initialize_mp(self, num_dof: int, duration: int, num_basis: int = 5, width: float = None,
|
||||||
off: float = 0.01, zero_start: bool = False, zero_goal: bool = False):
|
zero_start: bool = False, zero_goal: bool = False, **kwargs):
|
||||||
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=off,
|
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=0.01,
|
||||||
zero_start=zero_start, zero_goal=zero_goal)
|
zero_start=zero_start, zero_goal=zero_goal)
|
||||||
|
|
||||||
weights = np.zeros(shape=(num_basis, num_dof))
|
weights = np.zeros(shape=(num_basis, num_dof))
|
||||||
@ -33,10 +40,15 @@ class DetPMPWrapper(MPWrapper):
|
|||||||
return pmp
|
return pmp
|
||||||
|
|
||||||
def mp_rollout(self, action):
|
def mp_rollout(self, action):
|
||||||
params = np.reshape(action, newshape=(self.mp.n_basis, self.mp.n_dof)) * self.weights_scale
|
if self.learn_mp_length:
|
||||||
self.mp.set_weights(self.duration, params)
|
duration = max(1, self.duration*abs(action[0]))
|
||||||
_, des_pos, des_vel, _ = self.mp.compute_trajectory(1 / self.dt, 1.)
|
params = np.reshape(action[1:], (self.mp.n_basis, -1)) * self.weights_scale # TODO: Fix Bug when zero_start is true
|
||||||
|
else:
|
||||||
|
duration = self.duration
|
||||||
|
params = np.reshape(action, (self.mp.n_basis, -1)) * self.weights_scale # TODO: Fix Bug when zero_start is true
|
||||||
|
self.mp.set_weights(1., params)
|
||||||
|
_, des_pos, des_vel, _ = self.mp.compute_trajectory(frequency=max(1, duration))
|
||||||
if self.mp.zero_start:
|
if self.mp.zero_start:
|
||||||
des_pos += self.env.start_pos[None, :]
|
des_pos += self.start_pos
|
||||||
|
|
||||||
return des_pos, des_vel
|
return des_pos, des_vel
|
||||||
|
@ -4,7 +4,7 @@ from mp_lib import dmps
|
|||||||
from mp_lib.basis import DMPBasisGenerator
|
from mp_lib.basis import DMPBasisGenerator
|
||||||
from mp_lib.phase import ExpDecayPhaseGenerator
|
from mp_lib.phase import ExpDecayPhaseGenerator
|
||||||
|
|
||||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
from alr_envs.utils.mps.alr_env import AlrEnv
|
||||||
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||||
|
|
||||||
|
|
||||||
@ -32,26 +32,26 @@ class DmpWrapper(MPWrapper):
|
|||||||
goal_scale:
|
goal_scale:
|
||||||
"""
|
"""
|
||||||
self.learn_goal = learn_goal
|
self.learn_goal = learn_goal
|
||||||
dt = env.dt if hasattr(env, "dt") else dt
|
|
||||||
assert dt is not None
|
|
||||||
self.t = np.linspace(0, duration, int(duration / dt))
|
self.t = np.linspace(0, duration, int(duration / dt))
|
||||||
self.goal_scale = goal_scale
|
self.goal_scale = goal_scale
|
||||||
|
|
||||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, render_mode,
|
super().__init__(env=env, num_dof=num_dof, duration=duration, post_traj_time=post_traj_time,
|
||||||
|
policy_type=policy_type, weights_scale=weights_scale, render_mode=render_mode,
|
||||||
num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor)
|
num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor)
|
||||||
|
|
||||||
action_bounds = np.inf * np.ones((np.prod(self.mp.weights.shape) + (num_dof if learn_goal else 0)))
|
action_bounds = np.inf * np.ones((np.prod(self.mp.weights.shape) + (num_dof if learn_goal else 0)))
|
||||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||||
|
|
||||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, alpha_phase: float = 2.,
|
def initialize_mp(self, num_dof: int, duration: int, num_basis: int, alpha_phase: float = 2.,
|
||||||
bandwidth_factor: int = 3):
|
bandwidth_factor: int = 3, **kwargs):
|
||||||
|
|
||||||
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
|
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
|
||||||
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
|
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
|
||||||
basis_bandwidth_factor=bandwidth_factor)
|
basis_bandwidth_factor=bandwidth_factor)
|
||||||
|
|
||||||
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
|
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
|
||||||
duration=duration, dt=dt)
|
dt=self.dt)
|
||||||
|
|
||||||
return dmp
|
return dmp
|
||||||
|
|
||||||
|
@ -1,16 +1,36 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
from alr_envs.utils.mps.alr_env import AlrEnv
|
||||||
from alr_envs.utils.policies import get_policy_class
|
from alr_envs.utils.policies import get_policy_class, BaseController
|
||||||
|
|
||||||
|
|
||||||
class MPWrapper(gym.Wrapper, ABC):
|
class MPWrapper(gym.Wrapper, ABC):
|
||||||
|
"""
|
||||||
|
Base class for movement primitive based gym.Wrapper implementations.
|
||||||
|
|
||||||
def __init__(self, env: AlrEnv, num_dof: int, dt: float, duration: float = 1, post_traj_time: float = 0.,
|
:param env: The (wrapped) environment this wrapper is applied on
|
||||||
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
|
:param num_dof: Dimension of the action space of the wrapped env
|
||||||
|
:param duration: Number of timesteps in the trajectory of the movement primitive
|
||||||
|
:param post_traj_time: Time for which the last position of the trajectory is fed to the environment to continue
|
||||||
|
simulation
|
||||||
|
:param policy_type: Type or object defining the policy that is used to generate action based on the trajectory
|
||||||
|
:param weight_scale: Scaling parameter for the actions given to this wrapper
|
||||||
|
:param render_mode: Equivalent to gym render mode
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
env: AlrEnv,
|
||||||
|
num_dof: int,
|
||||||
|
duration: int = 1,
|
||||||
|
post_traj_time: float = 0.,
|
||||||
|
policy_type: Union[str, BaseController] = None,
|
||||||
|
weights_scale: float = 1.,
|
||||||
|
render_mode: str = None,
|
||||||
|
**mp_kwargs
|
||||||
|
):
|
||||||
super().__init__(env)
|
super().__init__(env)
|
||||||
|
|
||||||
# adjust observation space to reduce version
|
# adjust observation space to reduce version
|
||||||
@ -19,14 +39,15 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
high=obs_sp.high[self.env.active_obs],
|
high=obs_sp.high[self.env.active_obs],
|
||||||
dtype=obs_sp.dtype)
|
dtype=obs_sp.dtype)
|
||||||
|
|
||||||
assert dt is not None # this should never happen as MPWrapper is a base class
|
self.post_traj_steps = int(post_traj_time / env.dt)
|
||||||
self.post_traj_steps = int(post_traj_time / dt)
|
|
||||||
|
|
||||||
self.mp = self.initialize_mp(num_dof, duration, dt, **mp_kwargs)
|
self.mp = self.initialize_mp(num_dof=num_dof, duration=duration, **mp_kwargs)
|
||||||
self.weights_scale = weights_scale
|
self.weights_scale = weights_scale
|
||||||
|
|
||||||
policy_class = get_policy_class(policy_type)
|
if type(policy_type) is str:
|
||||||
self.policy = policy_class(env)
|
self.policy = get_policy_class(policy_type, env, mp_kwargs)
|
||||||
|
else:
|
||||||
|
self.policy = policy_type
|
||||||
|
|
||||||
# rendering
|
# rendering
|
||||||
self.render_mode = render_mode
|
self.render_mode = render_mode
|
||||||
@ -62,29 +83,30 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
|
|
||||||
if self.post_traj_steps > 0:
|
if self.post_traj_steps > 0:
|
||||||
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
|
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
|
||||||
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.n_dof))])
|
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.num_dimensions))])
|
||||||
|
|
||||||
# self._trajectory = trajectory
|
|
||||||
# self._velocity = velocity
|
|
||||||
|
|
||||||
rewards = 0
|
|
||||||
info = {}
|
|
||||||
# create random obs as the reset function is called externally
|
|
||||||
obs = self.env.observation_space.sample()
|
|
||||||
|
|
||||||
|
trajectory_length = len(trajectory)
|
||||||
|
actions = np.zeros(shape=(trajectory_length, self.mp.num_dimensions))
|
||||||
|
observations= np.zeros(shape=(trajectory_length,) + self.env.observation_space.shape)
|
||||||
|
rewards = np.zeros(shape=(trajectory_length,))
|
||||||
|
trajectory_return = 0
|
||||||
|
infos = dict(step_infos =[])
|
||||||
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
||||||
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
|
actions[t,:] = self.policy.get_action(pos_vel[0], pos_vel[1])
|
||||||
obs, rew, done, info = self.env.step(ac)
|
observations[t,:], rewards[t], done, info = self.env.step(actions[t,:])
|
||||||
rewards += rew
|
trajectory_return += rewards[t]
|
||||||
# TODO return all dicts?
|
infos['step_infos'].append(info)
|
||||||
# [infos[k].append(v) for k, v in info.items()]
|
|
||||||
if self.render_mode:
|
if self.render_mode:
|
||||||
self.env.render(mode=self.render_mode, **self.render_kwargs)
|
self.env.render(mode=self.render_mode, **self.render_kwargs)
|
||||||
if done:
|
if done:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
infos['step_actions'] = actions[:t+1]
|
||||||
|
infos['step_observations'] = observations[:t+1]
|
||||||
|
infos['step_rewards'] = rewards[:t+1]
|
||||||
|
infos['trajectory_length'] = t+1
|
||||||
done = True
|
done = True
|
||||||
return obs[self.env.active_obs], rewards, done, info
|
return observations[t][self.env.active_obs], trajectory_return, done, infos
|
||||||
|
|
||||||
def render(self, mode='human', **kwargs):
|
def render(self, mode='human', **kwargs):
|
||||||
"""Only set render options here, such that they can be used during the rollout.
|
"""Only set render options here, such that they can be used during the rollout.
|
||||||
@ -102,7 +124,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def initialize_mp(self, num_dof: int, duration: float, dt: float, **kwargs):
|
def initialize_mp(self, num_dof: int, duration: float, **kwargs):
|
||||||
"""
|
"""
|
||||||
Create respective instance of MP
|
Create respective instance of MP
|
||||||
Returns:
|
Returns:
|
||||||
|
@ -1,10 +1,12 @@
|
|||||||
|
from typing import Tuple, Union
|
||||||
|
|
||||||
from gym import Env
|
from gym import Env
|
||||||
|
|
||||||
from alr_envs.mujoco.alr_mujoco_env import AlrMujocoEnv
|
from alr_envs.utils.positional_env import PositionalEnv
|
||||||
|
|
||||||
|
|
||||||
class BaseController:
|
class BaseController:
|
||||||
def __init__(self, env: Env):
|
def __init__(self, env: Env, **kwargs):
|
||||||
self.env = env
|
self.env = env
|
||||||
|
|
||||||
def get_action(self, des_pos, des_vel):
|
def get_action(self, des_pos, des_vel):
|
||||||
@ -22,27 +24,38 @@ class VelController(BaseController):
|
|||||||
|
|
||||||
|
|
||||||
class PDController(BaseController):
|
class PDController(BaseController):
|
||||||
def __init__(self, env: AlrMujocoEnv):
|
"""
|
||||||
self.p_gains = env.p_gains
|
A PD-Controller. Using position and velocity information from a provided positional environment,
|
||||||
self.d_gains = env.d_gains
|
the controller calculates a response based on the desired position and velocity
|
||||||
super(PDController, self).__init__(env)
|
|
||||||
|
:param env: A position environment
|
||||||
|
:param p_gains: Factors for the proportional gains
|
||||||
|
:param d_gains: Factors for the differential gains
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
env: PositionalEnv,
|
||||||
|
p_gains: Union[float, Tuple],
|
||||||
|
d_gains: Union[float, Tuple]):
|
||||||
|
self.p_gains = p_gains
|
||||||
|
self.d_gains = d_gains
|
||||||
|
super(PDController, self).__init__(env, )
|
||||||
|
|
||||||
def get_action(self, des_pos, des_vel):
|
def get_action(self, des_pos, des_vel):
|
||||||
# TODO: make standardized ALRenv such that all of them have current_pos/vel attributes
|
|
||||||
cur_pos = self.env.current_pos
|
cur_pos = self.env.current_pos
|
||||||
cur_vel = self.env.current_vel
|
cur_vel = self.env.current_vel
|
||||||
if len(des_pos) != len(cur_pos):
|
assert des_pos.shape != cur_pos.shape, \
|
||||||
des_pos = self.env.extend_des_pos(des_pos)
|
"Mismatch in dimension between desired position {} and current position {}".format(des_pos.shape, cur_pos.shape)
|
||||||
if len(des_vel) != len(cur_vel):
|
assert des_vel.shape != cur_vel.shape, \
|
||||||
des_vel = self.env.extend_des_vel(des_vel)
|
"Mismatch in dimension between desired velocity {} and current velocity {}".format(des_vel.shape,
|
||||||
|
cur_vel.shape)
|
||||||
trq = self.p_gains * (des_pos - cur_pos) + self.d_gains * (des_vel - cur_vel)
|
trq = self.p_gains * (des_pos - cur_pos) + self.d_gains * (des_vel - cur_vel)
|
||||||
return trq
|
return trq
|
||||||
|
|
||||||
|
|
||||||
def get_policy_class(policy_type):
|
def get_policy_class(policy_type, env, mp_kwargs, **kwargs):
|
||||||
if policy_type == "motor":
|
if policy_type == "motor":
|
||||||
return PDController
|
return PDController(env, p_gains=mp_kwargs['p_gains'], d_gains=mp_kwargs['d_gains'])
|
||||||
elif policy_type == "velocity":
|
elif policy_type == "velocity":
|
||||||
return VelController
|
return VelController(env)
|
||||||
elif policy_type == "position":
|
elif policy_type == "position":
|
||||||
return PosController
|
return PosController(env)
|
||||||
|
22
alr_envs/utils/positional_env.py
Normal file
22
alr_envs/utils/positional_env.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
from abc import abstractmethod
|
||||||
|
from typing import Union, Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from gym import Env
|
||||||
|
|
||||||
|
class PositionalEnv(Env):
|
||||||
|
"""A position and velocity based environment. It functions just as any regular OpenAI Gym
|
||||||
|
environment but it provides position, velocity and acceleration information. This usually means that the
|
||||||
|
corresponding information from the agent is forwarded via the properties.
|
||||||
|
PD-Controller based policies require this environment to calculate the state dependent actions for example.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||||
|
raise NotImplementedError
|
Loading…
Reference in New Issue
Block a user