Merge pull request #2 from 1nf0rmagician/positional_env

Seperate required interface for the PD controller and update it
This commit is contained in:
maxhuettenrauch 2021-06-22 10:26:38 +02:00 committed by GitHub
commit 362d2cf24f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 169 additions and 86 deletions

View File

@ -1,3 +1,4 @@
import numpy as np
from gym.envs.registration import register
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
@ -321,7 +322,9 @@ register(
"bandwidth_factor": 2.5,
"policy_type": "motor",
"weights_scale": 100,
"return_to_start": True
"return_to_start": True,
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
)
@ -339,7 +342,9 @@ register(
"bandwidth_factor": 2.5,
"policy_type": "motor",
"weights_scale": 100,
"return_to_start": True
"return_to_start": True,
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
)
@ -357,7 +362,9 @@ register(
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"zero_goal": True
"zero_goal": True,
"p_gains": np.array([4./3., 2.4, 2.5, 5./3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
)
@ -374,7 +381,9 @@ register(
"policy_type": "motor",
"weights_scale": 0.2,
"zero_start": True,
"zero_goal": True
"zero_goal": True,
"p_gains": np.array([4./3., 2.4, 2.5, 5./3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
)
@ -392,7 +401,9 @@ register(
"bandwidth_factor": 2.5,
"policy_type": "motor",
"weights_scale": 50,
"goal_scale": 0.1
"goal_scale": 0.1,
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
}
)

View File

@ -7,7 +7,7 @@ from gym.utils import seeding
from matplotlib import patches
from alr_envs.classic_control.utils import check_self_collision
from alr_envs.utils.mps.mp_environments import AlrEnv
from alr_envs.utils.mps.alr_env import AlrEnv
class HoleReacherEnv(AlrEnv):

View File

@ -5,7 +5,7 @@ import numpy as np
from gym import spaces
from gym.utils import seeding
from alr_envs.utils.mps.mp_environments import AlrEnv
from alr_envs.utils.mps.alr_env import AlrEnv
class SimpleReacherEnv(AlrEnv):

View File

@ -6,7 +6,7 @@ import numpy as np
from gym.utils import seeding
from alr_envs.classic_control.utils import check_self_collision
from alr_envs.utils.mps.mp_environments import AlrEnv
from alr_envs.utils.mps.alr_env import AlrEnv
class ViaPointReacher(AlrEnv):

View File

@ -7,7 +7,9 @@ from gym import error, spaces
from gym.utils import seeding
import numpy as np
from os import path
import gym
from alr_envs.utils.mps.alr_env import AlrEnv
from alr_envs.utils.positional_env import PositionalEnv
try:
import mujoco_py
@ -33,7 +35,7 @@ def convert_observation_to_space(observation):
return space
class AlrMujocoEnv(gym.Env):
class AlrMujocoEnv(PositionalEnv, AlrEnv):
"""
Superclass for all MuJoCo environments.
"""
@ -44,7 +46,7 @@ class AlrMujocoEnv(gym.Env):
Args:
model_path: path to xml file
n_substeps: how many steps mujoco does per call to env.step
use_servo: use actuator defined in xml, use False for direct torque control
apply_gravity_comp: Whether gravity compensation should be active
"""
if model_path.startswith("/"):
fullpath = model_path
@ -73,10 +75,6 @@ class AlrMujocoEnv(gym.Env):
self._set_action_space()
# action = self.action_space.sample()
# observation, _reward, done, _info = self.step(action)
# assert not done
observation = self._get_obs() # TODO: is calling get_obs enough? should we call reset, or even step?
self._set_observation_space(observation)
@ -204,7 +202,7 @@ class AlrMujocoEnv(gym.Env):
try:
self.sim.step()
except mujoco_py.builder.MujocoException as e:
except mujoco_py.builder.MujocoException:
error_in_sim = True
return error_in_sim

View File

@ -16,8 +16,6 @@ class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
self._q_vel = []
# self.weight_matrix_scale = 50
self.max_ctrl = np.array([150., 125., 40., 60., 5., 5., 2.])
self.p_gains = 1 / self.max_ctrl * np.array([200, 300, 100, 100, 10, 10, 2.5])
self.d_gains = 1 / self.max_ctrl * np.array([7, 15, 5, 2.5, 0.3, 0.3, 0.05])
self.j_min = np.array([-2.6, -1.985, -2.8, -0.9, -4.55, -1.5707, -2.7])
self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7])

View File

@ -1,14 +1,13 @@
from abc import abstractmethod
from abc import abstractmethod, ABC
from typing import Union
import gym
import numpy as np
class AlrEnv(gym.Env):
class AlrEnv(gym.Env, ABC):
@property
@abstractmethod
def active_obs(self):
"""Returns boolean mask for each observation entry
whether the observation is returned for the contextual case or not.
@ -31,3 +30,11 @@ class AlrEnv(gym.Env):
By default this returns the starting position.
"""
return self.start_pos
@property
@abstractmethod
def dt(self) -> Union[float, int]:
"""
Returns the time between two simulated steps of the environment
"""
raise NotImplementedError()

View File

@ -2,29 +2,36 @@ import gym
import numpy as np
from mp_lib import det_promp
from alr_envs.utils.mps.mp_environments import AlrEnv
from alr_envs.utils.mps.alr_env import AlrEnv
from alr_envs.utils.mps.mp_wrapper import MPWrapper
class DetPMPWrapper(MPWrapper):
def __init__(self, env: AlrEnv, num_dof: int, num_basis: int, width: float, duration: float = 1, dt: float = 0.01,
post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
zero_start: bool = False, zero_goal: bool = False, **mp_kwargs):
def __init__(self, env: AlrEnv, num_dof, num_basis, width, start_pos=None, duration=1, post_traj_time=0.,
policy_type=None, weights_scale=1, zero_start=False, zero_goal=False, learn_mp_length: bool =True,
**mp_kwargs):
self.duration = duration # seconds
dt = env.dt if hasattr(env, "dt") else dt
assert dt is not None
self.dt = dt
super().__init__(env=env, num_dof=num_dof, duration=duration, post_traj_time=post_traj_time,
policy_type=policy_type, weights_scale=weights_scale, num_basis=num_basis,
width=width, zero_start=zero_start, zero_goal=zero_goal,
**mp_kwargs)
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, num_basis=num_basis,
width=width, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
self.learn_mp_length = learn_mp_length
if self.learn_mp_length:
parameter_space_shape = (1+num_basis*num_dof,)
else:
parameter_space_shape = (num_basis * num_dof,)
self.min_param = -np.inf
self.max_param = np.inf
self.parameterization_space = gym.spaces.Box(low=self.min_param, high=self.max_param,
shape=parameter_space_shape, dtype=np.float32)
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
self.start_pos = start_pos
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, width: float = None,
off: float = 0.01, zero_start: bool = False, zero_goal: bool = False):
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=off,
def initialize_mp(self, num_dof: int, duration: int, num_basis: int = 5, width: float = None,
zero_start: bool = False, zero_goal: bool = False, **kwargs):
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=0.01,
zero_start=zero_start, zero_goal=zero_goal)
weights = np.zeros(shape=(num_basis, num_dof))
@ -33,10 +40,15 @@ class DetPMPWrapper(MPWrapper):
return pmp
def mp_rollout(self, action):
params = np.reshape(action, newshape=(self.mp.n_basis, self.mp.n_dof)) * self.weights_scale
self.mp.set_weights(self.duration, params)
_, des_pos, des_vel, _ = self.mp.compute_trajectory(1 / self.dt, 1.)
if self.learn_mp_length:
duration = max(1, self.duration*abs(action[0]))
params = np.reshape(action[1:], (self.mp.n_basis, -1)) * self.weights_scale # TODO: Fix Bug when zero_start is true
else:
duration = self.duration
params = np.reshape(action, (self.mp.n_basis, -1)) * self.weights_scale # TODO: Fix Bug when zero_start is true
self.mp.set_weights(1., params)
_, des_pos, des_vel, _ = self.mp.compute_trajectory(frequency=max(1, duration))
if self.mp.zero_start:
des_pos += self.env.start_pos[None, :]
des_pos += self.start_pos
return des_pos, des_vel

View File

@ -4,7 +4,7 @@ from mp_lib import dmps
from mp_lib.basis import DMPBasisGenerator
from mp_lib.phase import ExpDecayPhaseGenerator
from alr_envs.utils.mps.mp_environments import AlrEnv
from alr_envs.utils.mps.alr_env import AlrEnv
from alr_envs.utils.mps.mp_wrapper import MPWrapper
@ -32,26 +32,26 @@ class DmpWrapper(MPWrapper):
goal_scale:
"""
self.learn_goal = learn_goal
dt = env.dt if hasattr(env, "dt") else dt
assert dt is not None
self.t = np.linspace(0, duration, int(duration / dt))
self.goal_scale = goal_scale
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, render_mode,
super().__init__(env=env, num_dof=num_dof, duration=duration, post_traj_time=post_traj_time,
policy_type=policy_type, weights_scale=weights_scale, render_mode=render_mode,
num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor)
action_bounds = np.inf * np.ones((np.prod(self.mp.weights.shape) + (num_dof if learn_goal else 0)))
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, alpha_phase: float = 2.,
bandwidth_factor: int = 3):
def initialize_mp(self, num_dof: int, duration: int, num_basis: int, alpha_phase: float = 2.,
bandwidth_factor: int = 3, **kwargs):
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
basis_bandwidth_factor=bandwidth_factor)
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
duration=duration, dt=dt)
dt=self.dt)
return dmp

View File

@ -1,16 +1,36 @@
from abc import ABC, abstractmethod
from typing import Union
import gym
import numpy as np
from alr_envs.utils.mps.mp_environments import AlrEnv
from alr_envs.utils.policies import get_policy_class
from alr_envs.utils.mps.alr_env import AlrEnv
from alr_envs.utils.policies import get_policy_class, BaseController
class MPWrapper(gym.Wrapper, ABC):
"""
Base class for movement primitive based gym.Wrapper implementations.
def __init__(self, env: AlrEnv, num_dof: int, dt: float, duration: float = 1, post_traj_time: float = 0.,
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
:param env: The (wrapped) environment this wrapper is applied on
:param num_dof: Dimension of the action space of the wrapped env
:param duration: Number of timesteps in the trajectory of the movement primitive
:param post_traj_time: Time for which the last position of the trajectory is fed to the environment to continue
simulation
:param policy_type: Type or object defining the policy that is used to generate action based on the trajectory
:param weight_scale: Scaling parameter for the actions given to this wrapper
:param render_mode: Equivalent to gym render mode
"""
def __init__(self,
env: AlrEnv,
num_dof: int,
duration: int = 1,
post_traj_time: float = 0.,
policy_type: Union[str, BaseController] = None,
weights_scale: float = 1.,
render_mode: str = None,
**mp_kwargs
):
super().__init__(env)
# adjust observation space to reduce version
@ -19,14 +39,15 @@ class MPWrapper(gym.Wrapper, ABC):
high=obs_sp.high[self.env.active_obs],
dtype=obs_sp.dtype)
assert dt is not None # this should never happen as MPWrapper is a base class
self.post_traj_steps = int(post_traj_time / dt)
self.post_traj_steps = int(post_traj_time / env.dt)
self.mp = self.initialize_mp(num_dof, duration, dt, **mp_kwargs)
self.mp = self.initialize_mp(num_dof=num_dof, duration=duration, **mp_kwargs)
self.weights_scale = weights_scale
policy_class = get_policy_class(policy_type)
self.policy = policy_class(env)
if type(policy_type) is str:
self.policy = get_policy_class(policy_type, env, mp_kwargs)
else:
self.policy = policy_type
# rendering
self.render_mode = render_mode
@ -62,29 +83,30 @@ class MPWrapper(gym.Wrapper, ABC):
if self.post_traj_steps > 0:
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.n_dof))])
# self._trajectory = trajectory
# self._velocity = velocity
rewards = 0
info = {}
# create random obs as the reset function is called externally
obs = self.env.observation_space.sample()
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.num_dimensions))])
trajectory_length = len(trajectory)
actions = np.zeros(shape=(trajectory_length, self.mp.num_dimensions))
observations= np.zeros(shape=(trajectory_length,) + self.env.observation_space.shape)
rewards = np.zeros(shape=(trajectory_length,))
trajectory_return = 0
infos = dict(step_infos =[])
for t, pos_vel in enumerate(zip(trajectory, velocity)):
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
obs, rew, done, info = self.env.step(ac)
rewards += rew
# TODO return all dicts?
# [infos[k].append(v) for k, v in info.items()]
actions[t,:] = self.policy.get_action(pos_vel[0], pos_vel[1])
observations[t,:], rewards[t], done, info = self.env.step(actions[t,:])
trajectory_return += rewards[t]
infos['step_infos'].append(info)
if self.render_mode:
self.env.render(mode=self.render_mode, **self.render_kwargs)
if done:
break
infos['step_actions'] = actions[:t+1]
infos['step_observations'] = observations[:t+1]
infos['step_rewards'] = rewards[:t+1]
infos['trajectory_length'] = t+1
done = True
return obs[self.env.active_obs], rewards, done, info
return observations[t][self.env.active_obs], trajectory_return, done, infos
def render(self, mode='human', **kwargs):
"""Only set render options here, such that they can be used during the rollout.
@ -102,7 +124,7 @@ class MPWrapper(gym.Wrapper, ABC):
raise NotImplementedError()
@abstractmethod
def initialize_mp(self, num_dof: int, duration: float, dt: float, **kwargs):
def initialize_mp(self, num_dof: int, duration: float, **kwargs):
"""
Create respective instance of MP
Returns:

View File

@ -1,10 +1,12 @@
from typing import Tuple, Union
from gym import Env
from alr_envs.mujoco.alr_mujoco_env import AlrMujocoEnv
from alr_envs.utils.positional_env import PositionalEnv
class BaseController:
def __init__(self, env: Env):
def __init__(self, env: Env, **kwargs):
self.env = env
def get_action(self, des_pos, des_vel):
@ -22,27 +24,38 @@ class VelController(BaseController):
class PDController(BaseController):
def __init__(self, env: AlrMujocoEnv):
self.p_gains = env.p_gains
self.d_gains = env.d_gains
super(PDController, self).__init__(env)
"""
A PD-Controller. Using position and velocity information from a provided positional environment,
the controller calculates a response based on the desired position and velocity
:param env: A position environment
:param p_gains: Factors for the proportional gains
:param d_gains: Factors for the differential gains
"""
def __init__(self,
env: PositionalEnv,
p_gains: Union[float, Tuple],
d_gains: Union[float, Tuple]):
self.p_gains = p_gains
self.d_gains = d_gains
super(PDController, self).__init__(env, )
def get_action(self, des_pos, des_vel):
# TODO: make standardized ALRenv such that all of them have current_pos/vel attributes
cur_pos = self.env.current_pos
cur_vel = self.env.current_vel
if len(des_pos) != len(cur_pos):
des_pos = self.env.extend_des_pos(des_pos)
if len(des_vel) != len(cur_vel):
des_vel = self.env.extend_des_vel(des_vel)
assert des_pos.shape != cur_pos.shape, \
"Mismatch in dimension between desired position {} and current position {}".format(des_pos.shape, cur_pos.shape)
assert des_vel.shape != cur_vel.shape, \
"Mismatch in dimension between desired velocity {} and current velocity {}".format(des_vel.shape,
cur_vel.shape)
trq = self.p_gains * (des_pos - cur_pos) + self.d_gains * (des_vel - cur_vel)
return trq
def get_policy_class(policy_type):
def get_policy_class(policy_type, env, mp_kwargs, **kwargs):
if policy_type == "motor":
return PDController
return PDController(env, p_gains=mp_kwargs['p_gains'], d_gains=mp_kwargs['d_gains'])
elif policy_type == "velocity":
return VelController
return VelController(env)
elif policy_type == "position":
return PosController
return PosController(env)

View File

@ -0,0 +1,22 @@
from abc import abstractmethod
from typing import Union, Tuple
import numpy as np
from gym import Env
class PositionalEnv(Env):
"""A position and velocity based environment. It functions just as any regular OpenAI Gym
environment but it provides position, velocity and acceleration information. This usually means that the
corresponding information from the agent is forwarded via the properties.
PD-Controller based policies require this environment to calculate the state dependent actions for example.
"""
@property
@abstractmethod
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
raise NotImplementedError
@property
@abstractmethod
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
raise NotImplementedError