start contextual dmp wrapper
This commit is contained in:
parent
c307383873
commit
36bf9b5b6a
@ -119,6 +119,16 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='SimpleReacher-v1',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 2,
|
||||
"random_start": False
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='LongSimpleReacher-v0',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
@ -154,8 +164,55 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacher-v2',
|
||||
entry_point='alr_envs.classic_control.hole_reacher_v2:HoleReacher',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"allow_self_collision": False,
|
||||
"allow_wall_collision": False,
|
||||
"hole_width": 0.25,
|
||||
"hole_depth": 1,
|
||||
"hole_x": 2,
|
||||
"collision_penalty": 100,
|
||||
}
|
||||
)
|
||||
|
||||
# MP environments
|
||||
|
||||
register(
|
||||
id='SimpleReacherDMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": "alr_envs:SimpleReacher-v0",
|
||||
"num_dof": 2,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"alpha_phase": 2,
|
||||
"learn_goal": True,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='SimpleReacherDMP-v1',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": "alr_envs:SimpleReacher-v1",
|
||||
"num_dof": 2,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"alpha_phase": 2,
|
||||
"learn_goal": True,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ViaPointReacherDMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
@ -190,6 +247,24 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacherDMP-v2',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": "alr_envs:HoleReacher-v2",
|
||||
"num_dof": 5,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"learn_goal": True,
|
||||
"alpha_phase": 2,
|
||||
"bandwidth_factor": 2,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
"goal_scale": 0.1
|
||||
}
|
||||
)
|
||||
|
||||
# TODO: properly add final_pos
|
||||
register(
|
||||
id='HoleReacherFixedGoalDMP-v0',
|
||||
|
307
alr_envs/classic_control/hole_reacher_v2.py
Normal file
307
alr_envs/classic_control/hole_reacher_v2.py
Normal file
@ -0,0 +1,307 @@
|
||||
import gym
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import patches
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
|
||||
|
||||
class HoleReacher(gym.Env):
|
||||
|
||||
def __init__(self, n_links, hole_x, hole_width, hole_depth, allow_self_collision=False,
|
||||
allow_wall_collision=False, collision_penalty=1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
# task
|
||||
self.hole_x = hole_x # x-position of center of hole
|
||||
self.hole_width = hole_width # width of hole
|
||||
self.hole_depth = hole_depth # depth of hole
|
||||
|
||||
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
|
||||
self.top_center_of_hole = np.hstack([hole_x, 0])
|
||||
self.left_wall_edge = np.hstack([hole_x - self.hole_width / 2, 0])
|
||||
self.right_wall_edge = np.hstack([hole_x + self.hole_width / 2, 0])
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.allow_wall_collision = allow_wall_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self.start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.dt = 0.01
|
||||
# self.time_limit = 2
|
||||
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
self.fig = None
|
||||
rect_1 = patches.Rectangle((-self.n_links, -1),
|
||||
self.n_links + self.hole_x - self.hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_2 = patches.Rectangle((self.hole_x + self.hole_width / 2, -1),
|
||||
self.n_links - self.hole_x + self.hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_3 = patches.Rectangle((self.hole_x - self.hole_width / 2, -1), self.hole_width,
|
||||
1 - self.hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
rect_4 = patches.Rectangle((-1, 0), # south west corner
|
||||
0.5, # width
|
||||
self.n_links, # height
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
self.patches = [rect_1, rect_2, rect_3, rect_4]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def configure(self, context):
|
||||
pass
|
||||
|
||||
def reset(self):
|
||||
self._joint_angles = self.start_pos
|
||||
self._angle_velocity = self.start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
a single step with an action in joint velocity space
|
||||
"""
|
||||
vel = action # + 0.01 * np.random.randn(self.num_links)
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = vel
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
|
||||
self._update_joints()
|
||||
|
||||
# rew = self._reward()
|
||||
|
||||
# compute reward directly in step function
|
||||
|
||||
success = False
|
||||
reward = 0
|
||||
if not self._is_collided:
|
||||
if self._steps == 199:
|
||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
reward = - dist ** 2
|
||||
success = dist < 0.005
|
||||
else:
|
||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
# if self.collision_penalty != 0:
|
||||
# reward = -self.collision_penalty
|
||||
# else:
|
||||
reward = - dist ** 2 - self.collision_penalty
|
||||
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
|
||||
info = {"is_collided": self._is_collided, "is_success": success}
|
||||
|
||||
self._steps += 1
|
||||
|
||||
# done = self._steps * self.dt > self.time_limit or self._is_collided
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update _joints to get new end effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
|
||||
|
||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||
|
||||
self_collision = False
|
||||
wall_collision = False
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
|
||||
self_collision = True
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = self.check_wall_collision(line_points_in_taskspace)
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self.bottom_center_of_hole,
|
||||
self._steps
|
||||
])
|
||||
|
||||
def get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
if num_points_per_link > 1:
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link)
|
||||
else:
|
||||
intermediate_points = 1
|
||||
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
|
||||
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
|
||||
endeffector[0, :, 0] = x[0, :]
|
||||
endeffector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.n_links):
|
||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(endeffector + self._joints[0, :])
|
||||
|
||||
def check_wall_collision(self, line_points):
|
||||
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where((line_points[:, :, 0] > -1) & (line_points[:, :, 0] < -0.5) &
|
||||
(line_points[:, :, 1] > 0) & (line_points[:, :, 1] < self.n_links))
|
||||
|
||||
if len(r) > 0:
|
||||
return True
|
||||
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] < (self.hole_x - self.hole_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_before_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are after the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] > (self.hole_x + self.hole_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_after_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are above the hole
|
||||
r, c = np.where((line_points[:, :, 0] > (self.hole_x - self.hole_width / 2)) & (
|
||||
line_points[:, :, 0] < (self.hole_x + self.hole_width / 2)))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self.hole_depth)
|
||||
|
||||
if nr_line_points_below_surface_in_hole > 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
self.fig = plt.figure()
|
||||
# plt.ion()
|
||||
# plt.pause(0.01)
|
||||
else:
|
||||
plt.figure(self.fig.number)
|
||||
|
||||
if mode == "human":
|
||||
plt.cla()
|
||||
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-1.1, lim])
|
||||
# plt.draw()
|
||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
||||
# self.fig.canvas.flush_events()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps == 1:
|
||||
# fig, ax = plt.subplots()
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
# plt.pause(0.01)
|
||||
|
||||
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
|
||||
# ax.plot(line_points_in_taskspace[:, 0, 0],
|
||||
# line_points_in_taskspace[:, 0, 1],
|
||||
# line_points_in_taskspace[:, -1, 0],
|
||||
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-1.1, lim])
|
||||
plt.pause(0.01)
|
||||
|
||||
elif mode == "final":
|
||||
if self._steps == 199 or self._is_collided:
|
||||
# fig, ax = plt.subplots()
|
||||
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
|
||||
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
def close(self):
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
nl = 5
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = HoleReacher(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=0.15,
|
||||
hole_depth=1, hole_x=1)
|
||||
env.reset()
|
||||
# env.render(mode=render_mode)
|
||||
|
||||
for i in range(200):
|
||||
# objective.load_result("/tmp/cma")
|
||||
# test with random actions
|
||||
ac = 2 * env.action_space.sample()
|
||||
# ac[0] += np.pi/2
|
||||
obs, rew, d, info = env.step(ac)
|
||||
env.render(mode=render_mode)
|
||||
|
||||
print(rew)
|
||||
|
||||
if d:
|
||||
break
|
||||
|
||||
env.close()
|
@ -18,17 +18,20 @@ class SimpleReacherEnv(gym.Env):
|
||||
towards the end of the trajectory.
|
||||
"""
|
||||
|
||||
def __init__(self, n_links):
|
||||
def __init__(self, n_links, random_start=True):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
self.dt = 0.1
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
self._goal_pos = None
|
||||
|
||||
self._joints = None
|
||||
self._joint_angle = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = None
|
||||
|
||||
self.max_torque = 1 # 10
|
||||
self.steps_before_reward = 199
|
||||
@ -50,6 +53,10 @@ class SimpleReacherEnv(gym.Env):
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
return self._start_pos
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
|
||||
# action = self._add_action_noise(action)
|
||||
@ -85,6 +92,7 @@ class SimpleReacherEnv(gym.Env):
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self._goal_pos,
|
||||
self._goal_pos,
|
||||
self._steps
|
||||
])
|
||||
|
||||
@ -116,7 +124,12 @@ class SimpleReacherEnv(gym.Env):
|
||||
|
||||
# TODO: maybe do initialisation more random?
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
self._joint_angle = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
||||
if self.random_start:
|
||||
self._joint_angle = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
||||
else:
|
||||
self._joint_angle = np.zeros(self.n_links)
|
||||
|
||||
self._start_pos = self._joint_angle
|
||||
self._angle_velocity = np.zeros(self.n_links)
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
|
@ -4,8 +4,8 @@ import numpy as np
|
||||
from _collections import defaultdict
|
||||
|
||||
|
||||
def make_env(env_id, rank, seed=0):
|
||||
env = gym.make(env_id)
|
||||
def make_env(env_id, rank, seed=0, **env_kwargs):
|
||||
env = gym.make(env_id, **env_kwargs)
|
||||
env.seed(seed + rank)
|
||||
return lambda: env
|
||||
|
||||
@ -45,9 +45,9 @@ class AlrMpEnvSampler:
|
||||
An asynchronous sampler for non contextual MPWrapper environments. A sampler object can be called with a set of
|
||||
parameters and returns the corresponding final obs, rewards, dones and info dicts.
|
||||
"""
|
||||
def __init__(self, env_id, num_envs, seed=0):
|
||||
def __init__(self, env_id, num_envs, seed=0, **env_kwargs):
|
||||
self.num_envs = num_envs
|
||||
self.env = AsyncVectorEnv([make_env(env_id, seed, i) for i in range(num_envs)])
|
||||
self.env = AsyncVectorEnv([make_env(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
|
||||
|
||||
def __call__(self, params):
|
||||
params = np.atleast_2d(params)
|
||||
@ -67,6 +67,36 @@ class AlrMpEnvSampler:
|
||||
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
|
||||
|
||||
|
||||
class AlrContextualMpEnvSampler:
|
||||
"""
|
||||
An asynchronous sampler for non contextual MPWrapper environments. A sampler object can be called with a set of
|
||||
parameters and returns the corresponding final obs, rewards, dones and info dicts.
|
||||
"""
|
||||
def __init__(self, env_id, num_envs, seed=0, **env_kwargs):
|
||||
self.num_envs = num_envs
|
||||
self.env = AsyncVectorEnv([make_env(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
|
||||
|
||||
def __call__(self, dist, n_samples):
|
||||
|
||||
repeat = int(np.ceil(n_samples / self.env.num_envs))
|
||||
vals = defaultdict(list)
|
||||
for i in range(repeat):
|
||||
obs = self.env.reset()
|
||||
|
||||
new_contexts = obs[-2]
|
||||
new_samples = dist.sample(new_contexts)
|
||||
|
||||
obs, reward, done, info = self.env.step(p)
|
||||
vals['obs'].append(obs)
|
||||
vals['reward'].append(reward)
|
||||
vals['done'].append(done)
|
||||
vals['info'].append(info)
|
||||
|
||||
# do not return values above threshold
|
||||
return np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples],\
|
||||
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
env_name = "alr_envs:ALRBallInACupSimpleDMP-v0"
|
||||
n_cpu = 8
|
||||
|
@ -36,9 +36,10 @@ class DmpWrapper(MPWrapper):
|
||||
dt = env.dt if hasattr(env, "dt") else dt
|
||||
assert dt is not None
|
||||
start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None
|
||||
assert start_pos is not None
|
||||
# TODO: assert start_pos is not None # start_pos will be set in initialize, do we need this here?
|
||||
if learn_goal:
|
||||
final_pos = np.zeros_like(start_pos) # arbitrary, will be learned
|
||||
# final_pos = np.zeros_like(start_pos) # arbitrary, will be learned
|
||||
final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned
|
||||
else:
|
||||
final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None
|
||||
assert final_pos is not None
|
||||
@ -62,7 +63,10 @@ class DmpWrapper(MPWrapper):
|
||||
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
|
||||
num_time_steps=int(duration / dt), dt=dt)
|
||||
|
||||
dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
|
||||
# dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
|
||||
# in a contextual environment, the start_pos may be not fixed, set in mp_rollout?
|
||||
# TODO: Should we set start_pos in init at all? It's only used after calling rollout anyway...
|
||||
dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof))
|
||||
|
||||
weights = np.zeros((num_basis, num_dof))
|
||||
goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos
|
||||
@ -87,6 +91,8 @@ class DmpWrapper(MPWrapper):
|
||||
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
|
||||
|
||||
def mp_rollout(self, action):
|
||||
if self.mp.start_pos is None:
|
||||
self.mp.start_pos = self.env.start_pos
|
||||
goal_pos, weight_matrix = self.goal_and_weights(action)
|
||||
self.mp.set_weights(weight_matrix, goal_pos)
|
||||
return self.mp.reference_trajectory(self.t)
|
||||
|
@ -61,6 +61,9 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
def configure(self, context):
|
||||
self.env.configure(context)
|
||||
|
||||
def reset(self):
|
||||
return self.env.reset()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
|
||||
trajectory, velocity = self.mp_rollout(action)
|
||||
@ -78,8 +81,9 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
# TODO: @Max Why do we need this configure, states should be part of the model
|
||||
# TODO: Ask Onur if the context distribution needs to be outside the environment
|
||||
# TODO: For now create a new env with each context
|
||||
# TODO: Explicitly call reset before step to obtain context from obs?
|
||||
# self.env.configure(context)
|
||||
obs = self.env.reset()
|
||||
# obs = self.env.reset()
|
||||
info = {}
|
||||
|
||||
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
||||
|
Loading…
Reference in New Issue
Block a user