remove reward_function attribute from Beerpong env

This commit is contained in:
Onur 2022-07-05 13:12:47 +02:00
parent 69de4286b3
commit 38f301dffb

View File

@ -0,0 +1,212 @@
import os
import mujoco_py.builder
import numpy as np
from gym import utils
from gym.envs.mujoco import MujocoEnv
from alr_envs.alr.mujoco.beerpong.deprecated.beerpong_reward_staged import BeerPongReward
class BeerPongEnv(MujocoEnv, utils.EzPickle):
def __init__(self, frame_skip=2):
self._steps = 0
# Small Context -> Easier. Todo: Should we do different versions?
# self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets",
# "beerpong_wo_cup" + ".xml")
# self._cup_pos_min = np.array([-0.32, -2.2])
# self._cup_pos_max = np.array([0.32, -1.2])
self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../assets",
"beerpong_wo_cup_big_table" + ".xml")
self._cup_pos_min = np.array([-1.42, -4.05])
self._cup_pos_max = np.array([1.42, -1.25])
self._start_pos = np.array([0.0, 1.35, 0.0, 1.18, 0.0, -0.786, -1.59])
self._start_vel = np.zeros(7)
self.release_step = 100 # time step of ball release
self.ep_length = 600 // frame_skip
self.reward_function = BeerPongReward()
self.repeat_action = frame_skip
self.model = None
self.site_id = lambda x: self.model.site_name2id(x)
self.body_id = lambda x: self.model.body_name2id(x)
MujocoEnv.__init__(self, self.xml_path, frame_skip=1)
utils.EzPickle.__init__(self)
@property
def start_pos(self):
return self._start_pos
@property
def start_vel(self):
return self._start_vel
def reset(self):
self.reward_function.reset()
return super().reset()
def reset_model(self):
init_pos_all = self.init_qpos.copy()
init_pos_robot = self.start_pos
init_vel = np.zeros_like(init_pos_all)
self._steps = 0
start_pos = init_pos_all
start_pos[0:7] = init_pos_robot
# TODO: Ask Max why we need to set the state twice.
self.set_state(start_pos, init_vel)
start_pos[7::] = self.sim.data.site_xpos[self.site_id("init_ball_pos"), :].copy()
self.set_state(start_pos, init_vel)
xy = self.np_random.uniform(self._cup_pos_min, self._cup_pos_max)
xyz = np.zeros(3)
xyz[:2] = xy
xyz[-1] = 0.840
self.sim.model.body_pos[self.body_id("cup_table")] = xyz
return self._get_obs()
def step(self, a):
crash = False
for _ in range(self.repeat_action):
applied_action = a + self.sim.data.qfrc_bias[:len(a)].copy() / self.model.actuator_gear[:, 0]
try:
self.do_simulation(applied_action, self.frame_skip)
self.reward_function.initialize(self)
# self.reward_function.check_contacts(self.sim) # I assume this is not important?
if self._steps < self.release_step:
self.sim.data.qpos[7::] = self.sim.data.site_xpos[self.site_id("init_ball_pos"), :].copy()
self.sim.data.qvel[7::] = self.sim.data.site_xvelp[self.site_id("init_ball_pos"), :].copy()
crash = False
except mujoco_py.builder.MujocoException:
crash = True
ob = self._get_obs()
if not crash:
reward, reward_infos = self.reward_function.compute_reward(self, applied_action)
is_collided = reward_infos['is_collided']
done = is_collided or self._steps == self.ep_length - 1
self._steps += 1
else:
reward = -30
done = True
reward_infos = {"success": False, "ball_pos": np.zeros(3), "ball_vel": np.zeros(3), "is_collided": False}
infos = dict(
reward=reward,
action=a,
q_pos=self.sim.data.qpos[0:7].ravel().copy(),
q_vel=self.sim.data.qvel[0:7].ravel().copy(), sim_crash=crash,
)
infos.update(reward_infos)
return ob, reward, done, infos
def _get_obs(self):
theta = self.sim.data.qpos.flat[:7]
theta_dot = self.sim.data.qvel.flat[:7]
ball_pos = self.data.get_body_xpos("ball").copy()
cup_goal_diff_final = ball_pos - self.data.get_site_xpos("cup_goal_final_table").copy()
cup_goal_diff_top = ball_pos - self.data.get_site_xpos("cup_goal_table").copy()
return np.concatenate([
np.cos(theta),
np.sin(theta),
theta_dot,
cup_goal_diff_final,
cup_goal_diff_top,
self.sim.model.body_pos[self.body_id("cup_table")][:2].copy(),
[self._steps],
])
@property
def dt(self):
return super(BeerPongEnv, self).dt * self.repeat_action
class BeerPongEnvFixedReleaseStep(BeerPongEnv):
def __init__(self, frame_skip=2):
super().__init__(frame_skip)
self.release_step = 62 # empirically evaluated for frame_skip=2!
class BeerPongEnvStepBasedEpisodicReward(BeerPongEnv):
def __init__(self, frame_skip=2):
super().__init__(frame_skip)
self.release_step = 62 # empirically evaluated for frame_skip=2!
def step(self, a):
if self._steps < self.release_step:
return super(BeerPongEnvStepBasedEpisodicReward, self).step(a)
else:
reward = 0
done = False
while not done:
sub_ob, sub_reward, done, sub_infos = super(BeerPongEnvStepBasedEpisodicReward, self).step(
np.zeros(a.shape))
reward += sub_reward
infos = sub_infos
ob = sub_ob
ob[-1] = self.release_step + 1 # Since we simulate until the end of the episode, PPO does not see the
# internal steps and thus, the observation also needs to be set correctly
return ob, reward, done, infos
# class ALRBeerBongEnvStepBased(ALRBeerBongEnv):
# def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
# super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos)
# self.release_step = 62 # empirically evaluated for frame_skip=2!
#
# def step(self, a):
# if self._steps < self.release_step:
# return super(ALRBeerBongEnvStepBased, self).step(a)
# else:
# reward = 0
# done = False
# while not done:
# sub_ob, sub_reward, done, sub_infos = super(ALRBeerBongEnvStepBased, self).step(np.zeros(a.shape))
# if not done or sub_infos['sim_crash']:
# reward += sub_reward
# else:
# ball_pos = self.sim.data.body_xpos[self.sim.model._body_name2id["ball"]].copy()
# cup_goal_dist_final = np.linalg.norm(ball_pos - self.sim.data.site_xpos[
# self.sim.model._site_name2id["cup_goal_final_table"]].copy())
# cup_goal_dist_top = np.linalg.norm(ball_pos - self.sim.data.site_xpos[
# self.sim.model._site_name2id["cup_goal_table"]].copy())
# if sub_infos['success']:
# dist_rew = -cup_goal_dist_final ** 2
# else:
# dist_rew = -0.5 * cup_goal_dist_final ** 2 - cup_goal_dist_top ** 2
# reward = reward - sub_infos['action_cost'] + dist_rew
# infos = sub_infos
# ob = sub_ob
# ob[-1] = self.release_step + 1 # Since we simulate until the end of the episode, PPO does not see the
# # internal steps and thus, the observation also needs to be set correctly
# return ob, reward, done, infos
if __name__ == "__main__":
env = BeerPongEnv(frame_skip=2)
env.seed(0)
# env = ALRBeerBongEnvStepBased(frame_skip=2)
# env = ALRBeerBongEnvStepBasedEpisodicReward(frame_skip=2)
# env = ALRBeerBongEnvFixedReleaseStep(frame_skip=2)
import time
env.reset()
env.render("human")
for i in range(600):
# ac = 10 * env.action_space.sample()
ac = 0.05 * np.ones(7)
obs, rew, d, info = env.step(ac)
env.render("human")
if d:
print('reward:', rew)
print('RESETTING')
env.reset()
time.sleep(1)
env.close()