updated test to pytest

This commit is contained in:
Fabian 2022-09-26 09:46:53 +02:00
parent 756a9fb039
commit 39815ad09a
10 changed files with 133 additions and 497 deletions

View File

@ -77,7 +77,6 @@ class BlackBoxWrapper(gym.ObservationWrapper):
# TODO: is this correct for replanning? Do we need to adjust anything here?
bc_time = np.array(0 if not self.do_replanning else self.current_traj_steps * self.dt)
self.traj_gen.set_boundary_conditions(bc_time, self.current_pos, self.current_vel)
# TODO: remove the - self.dt after Bruces fix.
self.traj_gen.set_duration(None if self.learn_sub_trajectories else self.duration, self.dt)
# traj_dict = self.traj_gen.get_trajs(get_pos=True, get_vel=True)
trajectory = get_numpy(self.traj_gen.get_traj_pos())

View File

@ -1,130 +0,0 @@
import unittest
import gym
import numpy as np
from dm_control import suite, manipulation
import fancy_gym
from fancy_gym import make
SUITE_IDS = [f'dmc:{env}-{task}' for env, task in suite.ALL_TASKS if env != "lqr"]
MANIPULATION_IDS = [f'dmc:manipulation-{task}' for task in manipulation.ALL if task.endswith('_features')]
SEED = 1
class TestDMCEnvironments(unittest.TestCase):
def _run_env(self, env_id, iterations=None, seed=SEED, render=False):
"""
Example for running a DMC based env in the step based setting.
The env_id has to be specified as `dmc:domain_name-task_name` or
for manipulation tasks as `manipulation-environment_name`
Args:
env_id: Either `dmc:domain_name-task_name` or `dmc:manipulation-environment_name`
iterations: Number of rollout steps to run
seed: random seeding
render: Render the episode
Returns: observations, rewards, dones, actions
"""
env: gym.Env = make(env_id, seed=seed)
rewards = []
observations = []
actions = []
dones = []
obs = env.reset()
self._verify_observations(obs, env.observation_space, "reset()")
iterations = iterations or (env.spec.max_episode_steps or 1)
# number of samples(multiple environment steps)
for i in range(iterations):
observations.append(obs)
ac = env.action_space.sample()
actions.append(ac)
# ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape)
obs, reward, done, info = env.step(ac)
self._verify_observations(obs, env.observation_space, "step()")
self._verify_reward(reward)
self._verify_done(done)
rewards.append(reward)
dones.append(done)
if render:
env.render("human")
if done:
break
assert done, "Done flag is not True after end of episode."
observations.append(obs)
env.close()
del env
return np.array(observations), np.array(rewards), np.array(dones), np.array(actions)
def _run_env_determinism(self, ids):
seed = 0
for env_id in ids:
with self.subTest(msg=env_id):
traj1 = self._run_env(env_id, seed=seed)
traj2 = self._run_env(env_id, seed=seed)
for i, time_step in enumerate(zip(*traj1, *traj2)):
obs1, rwd1, done1, ac1, obs2, rwd2, done2, ac2 = time_step
self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] delta {obs1 - obs2} is not zero.")
self.assertTrue(np.array_equal(ac1, ac2), f"Actions [{i}] delta {ac1 - ac2} is not zero.")
self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.")
self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.")
def _verify_observations(self, obs, observation_space, obs_type="reset()"):
self.assertTrue(observation_space.contains(obs),
f"Observation {obs} received from {obs_type} "
f"not contained in observation space {observation_space}.")
def _verify_reward(self, reward):
self.assertIsInstance(reward, (float, int), f"Returned type {type(reward)} as reward, expected float or int.")
def _verify_done(self, done):
self.assertIsInstance(done, bool, f"Returned {done} as done flag, expected bool.")
def test_suite_functionality(self):
"""Tests that suite step environments run without errors using random actions."""
for env_id in SUITE_IDS:
with self.subTest(msg=env_id):
self._run_env(env_id)
def test_suite_determinism(self):
"""Tests that for step environments identical seeds produce identical trajectories."""
self._run_env_determinism(SUITE_IDS)
def test_manipulation_functionality(self):
"""Tests that manipulation step environments run without errors using random actions."""
for env_id in MANIPULATION_IDS:
with self.subTest(msg=env_id):
self._run_env(env_id)
def test_manipulation_determinism(self):
"""Tests that for step environments identical seeds produce identical trajectories."""
self._run_env_determinism(MANIPULATION_IDS)
def test_bb_functionality(self):
"""Tests that black box environments run without errors using random actions."""
for traj_gen, env_ids in fancy_gym.ALL_DMC_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
for id in env_ids:
with self.subTest(msg=id):
self._run_env(id)
def test_bb_determinism(self):
"""Tests that for black box environment identical seeds produce identical trajectories."""
for traj_gen, env_ids in fancy_gym.ALL_DMC_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
self._run_env_determinism(env_ids)
if __name__ == '__main__':
unittest.main()

48
test/test_dmc_envs.py Normal file
View File

@ -0,0 +1,48 @@
from itertools import chain
import pytest
from dm_control import suite, manipulation
import fancy_gym
from test.utils import run_env, run_env_determinism
SUITE_IDS = [f'dmc:{env}-{task}' for env, task in suite.ALL_TASKS if env != "lqr"]
MANIPULATION_IDS = [f'dmc:manipulation-{task}' for task in manipulation.ALL if task.endswith('_features')]
DMC_MP_IDS = chain(*fancy_gym.ALL_DMC_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
SEED = 1
@pytest.mark.parametrize('env_id', SUITE_IDS)
def test_step_suite_functionality(env_id: str):
"""Tests that suite step environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', SUITE_IDS)
def test_step_suite_determinism(env_id: str):
"""Tests that for step environments identical seeds produce identical trajectories."""
run_env_determinism(env_id, SEED)
@pytest.mark.parametrize('env_id', MANIPULATION_IDS)
def test_step_manipulation_functionality(env_id: str):
"""Tests that manipulation step environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', MANIPULATION_IDS)
def test_step_manipulation_determinism(env_id: str):
"""Tests that for step environments identical seeds produce identical trajectories."""
run_env_determinism(env_id, SEED)
@pytest.mark.parametrize('env_id', DMC_MP_IDS)
def test_bb_dmc_functionality(env_id: str):
"""Tests that black box environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', DMC_MP_IDS)
def test_bb_dmc_determinism(env_id: str):
"""Tests that for black box environment identical seeds produce identical trajectories."""
run_env_determinism(env_id, SEED)

View File

@ -1,118 +0,0 @@
import unittest
import gym
import numpy as np
import fancy_gym # noqa
from fancy_gym.utils.make_env_helpers import make
CUSTOM_IDS = [spec.id for spec in gym.envs.registry.all() if
"fancy_gym" in spec.entry_point and 'make_bb_env_helper' not in spec.entry_point]
SEED = 1
class TestCustomEnvironments(unittest.TestCase):
def _run_env(self, env_id, iterations=None, seed=SEED, render=False):
"""
Example for running a DMC based env in the step based setting.
The env_id has to be specified as `domain_name-task_name` or
for manipulation tasks as `manipulation-environment_name`
Args:
env_id: Either `domain_name-task_name` or `manipulation-environment_name`
iterations: Number of rollout steps to run
seed: random seeding
render: Render the episode
Returns: observations, rewards, dones, actions
"""
env: gym.Env = make(env_id, seed=seed)
rewards = []
actions = []
observations = []
dones = []
obs = env.reset()
self._verify_observations(obs, env.observation_space, "reset()")
iterations = iterations or (env.spec.max_episode_steps or 1)
# number of samples(multiple environment steps)
for i in range(iterations):
observations.append(obs)
ac = env.action_space.sample()
actions.append(ac)
obs, reward, done, info = env.step(ac)
self._verify_observations(obs, env.observation_space, "step()")
self._verify_reward(reward)
self._verify_done(done)
rewards.append(reward)
dones.append(done)
if render:
env.render("human")
if done:
break
assert done, "Done flag is not True after end of episode."
observations.append(obs)
env.close()
del env
return np.array(observations), np.array(rewards), np.array(dones), np.array(actions)
def _run_env_determinism(self, ids):
seed = 0
for env_id in ids:
with self.subTest(msg=env_id):
traj1 = self._run_env(env_id, seed=seed)
traj2 = self._run_env(env_id, seed=seed)
for i, time_step in enumerate(zip(*traj1, *traj2)):
obs1, rwd1, done1, ac1, obs2, rwd2, done2, ac2 = time_step
self.assertTrue(np.array_equal(ac1, ac2), f"Actions [{i}] delta {ac1 - ac2} is not zero.")
self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] delta {obs1 - obs2} is not zero.")
self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.")
self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.")
def _verify_observations(self, obs, observation_space, obs_type="reset()"):
self.assertTrue(observation_space.contains(obs),
f"Observation {obs} received from {obs_type} "
f"not contained in observation space {observation_space}.")
def _verify_reward(self, reward):
self.assertIsInstance(reward, (float, int), f"Returned type {type(reward)} as reward, expected float or int.")
def _verify_done(self, done):
self.assertIsInstance(done, bool, f"Returned {done} as done flag, expected bool.")
def test_step_functionality(self):
"""Tests that step environments run without errors using random actions."""
for env_id in CUSTOM_IDS:
with self.subTest(msg=env_id):
self._run_env(env_id)
def test_step_determinism(self):
"""Tests that for step environments identical seeds produce identical trajectories."""
self._run_env_determinism(CUSTOM_IDS)
def test_bb_functionality(self):
"""Tests that black box environments run without errors using random actions."""
for traj_gen, env_ids in fancy_gym.ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
for id in env_ids:
with self.subTest(msg=id):
self._run_env(id)
def test_bb_determinism(self):
"""Tests that for black box environment identical seeds produce identical trajectories."""
for traj_gen, env_ids in fancy_gym.ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
self._run_env_determinism(env_ids)
if __name__ == '__main__':
unittest.main()

View File

@ -1,3 +1,5 @@
import itertools
import fancy_gym
import gym
import pytest
@ -6,30 +8,29 @@ from test.utils import run_env, run_env_determinism
CUSTOM_IDS = [spec.id for spec in gym.envs.registry.all() if
"fancy_gym" in spec.entry_point and 'make_bb_env_helper' not in spec.entry_point]
CUSTOM_MP_IDS = itertools.chain(*fancy_gym.ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
SEED = 1
@pytest.mark.parametrize('env_id', CUSTOM_IDS)
def test_step_functionality(env_id: str):
def test_step_fancy_functionality(env_id: str):
"""Tests that step environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', CUSTOM_IDS)
def test_step_determinism(env_id: str):
def test_step_fancy_determinism(env_id: str):
"""Tests that for step environments identical seeds produce identical trajectories."""
seed = 0
run_env_determinism(env_id, seed)
run_env_determinism(env_id, SEED)
@pytest.mark.parametrize('env_id', fancy_gym.ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
def test_bb_functionality(env_id: str):
@pytest.mark.parametrize('env_id', CUSTOM_MP_IDS)
def test_bb_fancy_functionality(env_id: str):
"""Tests that black box environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', fancy_gym.ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
def test_bb_determinism(env_id: str):
@pytest.mark.parametrize('env_id', CUSTOM_MP_IDS)
def test_bb_fancy_determinism(env_id: str):
"""Tests that for black box environment identical seeds produce identical trajectories."""
seed = 0
run_env_determinism(env_id, seed)
run_env_determinism(env_id, SEED)

View File

@ -1,118 +0,0 @@
import unittest
import gym
import numpy as np
import fancy_gym
from fancy_gym import make
GYM_IDS = [spec.id for spec in gym.envs.registry.all() if
"fancy_gym" not in spec.entry_point and 'make_bb_env_helper' not in spec.entry_point]
SEED = 1
class TestGymEnvironments(unittest.TestCase):
def _run_env(self, env_id, iterations=None, seed=SEED, render=False):
"""
Example for running a openai gym env in the step based setting.
The env_id has to be specified as `env_id-vX`.
Args:
env_id: env id in the form `env_id-vX`
iterations: Number of rollout steps to run
seed: random seeding
render: Render the episode
Returns:
"""
env: gym.Env = make(env_id, seed=seed)
rewards = []
observations = []
actions = []
dones = []
obs = env.reset()
self._verify_observations(obs, env.observation_space, "reset()")
iterations = iterations or (env.spec.max_episode_steps or 1)
# number of samples(multiple environment steps)
for i in range(iterations):
observations.append(obs)
ac = env.action_space.sample()
actions.append(ac)
# ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape)
obs, reward, done, info = env.step(ac)
self._verify_observations(obs, env.observation_space, "step()")
self._verify_reward(reward)
self._verify_done(done)
rewards.append(reward)
dones.append(done)
if render:
env.render("human")
if done:
break
assert done or env.spec.max_episode_steps is None, "Done flag is not True after end of episode."
observations.append(obs)
env.close()
del env
return np.array(observations), np.array(rewards), np.array(dones), np.array(actions)
def _run_env_determinism(self, ids):
seed = 0
for env_id in ids:
with self.subTest(msg=env_id):
traj1 = self._run_env(env_id, seed=seed)
traj2 = self._run_env(env_id, seed=seed)
for i, time_step in enumerate(zip(*traj1, *traj2)):
obs1, rwd1, done1, ac1, obs2, rwd2, done2, ac2 = time_step
self.assertTrue(np.array_equal(ac1, ac2), f"Actions [{i}] delta {ac1 - ac2} is not zero.")
self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] delta {obs1 - obs2} is not zero.")
self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.")
self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.")
def _verify_observations(self, obs, observation_space, obs_type="reset()"):
self.assertTrue(observation_space.contains(obs),
f"Observation {obs} received from {obs_type} "
f"not contained in observation space {observation_space}.")
def _verify_reward(self, reward):
self.assertIsInstance(reward, (float, int), f"Returned type {type(reward)} as reward, expected float or int.")
def _verify_done(self, done):
self.assertIsInstance(done, bool, f"Returned {done} as done flag, expected bool.")
def test_step_functionality(self):
"""Tests that step environments run without errors using random actions."""
for env_id in GYM_IDS:
with self.subTest(msg=env_id):
self._run_env(env_id)
def test_step_determinism(self):
"""Tests that for step environments identical seeds produce identical trajectories."""
self._run_env_determinism(GYM_IDS)
def test_bb_functionality(self):
"""Tests that black box environments run without errors using random actions."""
for traj_gen, env_ids in fancy_gym.ALL_GYM_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
for id in env_ids:
with self.subTest(msg=id):
self._run_env(id)
def test_bb_determinism(self):
"""Tests that for black box environment identical seeds produce identical trajectories."""
for traj_gen, env_ids in fancy_gym.ALL_GYM_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
self._run_env_determinism(env_ids)
if __name__ == '__main__':
unittest.main()

36
test/test_gym_envs.py Normal file
View File

@ -0,0 +1,36 @@
from itertools import chain
import gym
import pytest
import fancy_gym
from test.utils import run_env, run_env_determinism
GYM_IDS = [spec.id for spec in gym.envs.registry.all() if
"fancy_gym" not in spec.entry_point and 'make_bb_env_helper' not in spec.entry_point]
GYM_MP_IDS = chain(*fancy_gym.ALL_DMC_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
SEED = 1
@pytest.mark.parametrize('env_id', GYM_IDS)
def test_step_gym_functionality(env_id: str):
"""Tests that step environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', GYM_IDS)
def test_step_gym_determinism(env_id: str):
"""Tests that for step environments identical seeds produce identical trajectories."""
run_env_determinism(env_id, SEED)
@pytest.mark.parametrize('env_id', GYM_MP_IDS)
def test_bb_gym_functionality(env_id: str):
"""Tests that black box environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', GYM_MP_IDS)
def test_bb_gym_determinism(env_id: str):
"""Tests that for black box environment identical seeds produce identical trajectories."""
run_env_determinism(env_id, SEED)

View File

@ -1,119 +0,0 @@
import unittest
import gym
import numpy as np
from metaworld.envs import ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE
import fancy_gym
from fancy_gym import make
METAWORLD_IDS = [f'metaworld:{env.split("-goal-observable")[0]}' for env, _ in
ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE.items()]
SEED = 1
class TestMetaWorldEnvironments(unittest.TestCase):
def _run_env(self, env_id, iterations=None, seed=SEED, render=False):
"""
Example for running a metaworld based env in the step based setting.
The env_id has to be specified as `metaworld:env_id-vX`.
Args:
env_id: env id in the form `metaworld:env_id-vX`
iterations: Number of rollout steps to run
seed: random seeding
render: Render the episode
Returns:
"""
env: gym.Env = make(env_id, seed=seed)
rewards = []
observations = []
actions = []
dones = []
obs = env.reset()
self._verify_observations(obs, env.observation_space, "reset()")
iterations = iterations or (env.spec.max_episode_steps or 1)
# number of samples(multiple environment steps)
for i in range(iterations):
observations.append(obs)
ac = env.action_space.sample()
actions.append(ac)
# ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape)
obs, reward, done, info = env.step(ac)
self._verify_observations(obs, env.observation_space, "step()")
self._verify_reward(reward)
self._verify_done(done)
rewards.append(reward)
dones.append(done)
if render:
env.render("human")
if done:
break
assert done, "Done flag is not True after end of episode."
observations.append(obs)
env.close()
del env
return np.array(observations), np.array(rewards), np.array(dones), np.array(actions)
def _run_env_determinism(self, ids):
seed = 0
for env_id in ids:
with self.subTest(msg=env_id):
traj1 = self._run_env(env_id, seed=seed)
traj2 = self._run_env(env_id, seed=seed)
for i, time_step in enumerate(zip(*traj1, *traj2)):
obs1, rwd1, done1, ac1, obs2, rwd2, done2, ac2 = time_step
self.assertTrue(np.array_equal(ac1, ac2), f"Actions [{i}] delta {ac1 - ac2} is not zero.")
self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] delta {obs1 - obs2} is not zero.")
self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.")
self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.")
def _verify_observations(self, obs, observation_space, obs_type="reset()"):
self.assertTrue(observation_space.contains(obs),
f"Observation {obs} received from {obs_type} "
f"not contained in observation space {observation_space}.")
def _verify_reward(self, reward):
self.assertIsInstance(reward, (float, int), f"Returned type {type(reward)} as reward, expected float or int.")
def _verify_done(self, done):
self.assertIsInstance(done, bool, f"Returned {done} as done flag, expected bool.")
def test_step_functionality(self):
"""Tests that step environments run without errors using random actions."""
for env_id in METAWORLD_IDS:
with self.subTest(msg=env_id):
self._run_env(env_id)
def test_step_determinism(self):
"""Tests that for step environments identical seeds produce identical trajectories."""
self._run_env_determinism(METAWORLD_IDS)
def test_bb_functionality(self):
"""Tests that black box environments run without errors using random actions."""
for traj_gen, env_ids in fancy_gym.ALL_METAWORLD_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
for id in env_ids:
with self.subTest(msg=id):
self._run_env(id)
def test_bb_determinism(self):
"""Tests that for black box environment identical seeds produce identical trajectories."""
for traj_gen, env_ids in fancy_gym.ALL_METAWORLD_MOVEMENT_PRIMITIVE_ENVIRONMENTS.items():
with self.subTest(msg=traj_gen):
self._run_env_determinism(env_ids)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,37 @@
from itertools import chain
import pytest
from metaworld.envs import ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE
import fancy_gym
from test.utils import run_env, run_env_determinism
METAWORLD_IDS = [f'metaworld:{env.split("-goal-observable")[0]}' for env, _ in
ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE.items()]
METAWORLD_MP_IDS = chain(*fancy_gym.ALL_METAWORLD_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
print(METAWORLD_MP_IDS)
SEED = 1
@pytest.mark.parametrize('env_id', METAWORLD_IDS)
def test_step_metaworld_functionality(env_id: str):
"""Tests that step environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', METAWORLD_IDS)
def test_step_metaworld_determinism(env_id: str):
"""Tests that for step environments identical seeds produce identical trajectories."""
run_env_determinism(env_id, SEED)
@pytest.mark.parametrize('env_id', METAWORLD_MP_IDS)
def test_bb_metaworld_functionality(env_id: str):
"""Tests that black box environments run without errors using random actions."""
run_env(env_id)
@pytest.mark.parametrize('env_id', METAWORLD_MP_IDS)
def test_bb_metaworld_determinism(env_id: str):
"""Tests that for black box environment identical seeds produce identical trajectories."""
run_env_determinism(env_id, SEED)

View File

@ -69,7 +69,7 @@ def run_env_determinism(env_id: str, seed: int):
assert np.array_equal(done1, done2), f"Dones [{i}] {done1} and {done2} do not match."
def verify_observations(obs, observation_space, obs_type="reset()"):
def verify_observations(obs, observation_space: gym.Space, obs_type="reset()"):
assert observation_space.contains(obs), \
f"Observation {obs} received from {obs_type} not contained in observation space {observation_space}."