This commit is contained in:
Hongyi Zhou 2022-11-04 21:22:32 +01:00
parent 7b2451d317
commit 5a547d85f9
9 changed files with 336 additions and 103 deletions

View File

@ -23,7 +23,7 @@ class BlackBoxWrapper(gym.ObservationWrapper):
replanning_schedule: Optional[
Callable[[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int], bool]] = None,
reward_aggregation: Callable[[np.ndarray], float] = np.sum,
max_planning_times: int = 1,
max_planning_times = None,
desired_conditioning: bool = False
):
"""
@ -163,8 +163,9 @@ class BlackBoxWrapper(gym.ObservationWrapper):
# action = np.concatenate((basis_weights, goal_weights), axis=1).flatten()
# TODO remove this part, right now only needed for beer pong
mp_params, env_spec_params = self.env.episode_callback(action, self.traj_gen)
position, velocity = self.get_trajectory(mp_params)
# mp_params, env_spec_params, proceed = self.env.episode_callback(action, self.traj_gen)
position, velocity = self.get_trajectory(action)
traj_is_valid = self.env.episode_callback(action, position, velocity)
trajectory_length = len(position)
rewards = np.zeros(shape=(trajectory_length,))
@ -176,52 +177,71 @@ class BlackBoxWrapper(gym.ObservationWrapper):
infos = dict()
done = False
self.plan_counts += 1
for t, (pos, vel) in enumerate(zip(position, velocity)):
step_action = self.tracking_controller.get_action(pos, vel, self.current_pos, self.current_vel)
c_action = np.clip(step_action, self.env.action_space.low, self.env.action_space.high)
obs, c_reward, done, info = self.env.step(c_action)
rewards[t] = c_reward
if self.verbose >= 2:
desired_pos_traj = []
desired_vel_traj = []
pos_traj = []
vel_traj = []
if traj_is_valid:
self.plan_counts += 1
for t, (pos, vel) in enumerate(zip(position, velocity)):
step_action = self.tracking_controller.get_action(pos, vel, self.current_pos, self.current_vel)
c_action = np.clip(step_action, self.env.action_space.low, self.env.action_space.high)
obs, c_reward, done, info = self.env.step(c_action)
rewards[t] = c_reward
if self.verbose >= 2:
actions[t, :] = c_action
observations[t, :] = obs
for k, v in info.items():
elems = infos.get(k, [None] * trajectory_length)
elems[t] = v
infos[k] = elems
if self.verbose >= 2:
desired_pos_traj.append(pos)
desired_vel_traj.append(vel)
pos_traj.append(self.current_pos)
vel_traj.append(self.current_vel)
if self.render_kwargs:
self.env.render(**self.render_kwargs)
if done or self.replanning_schedule(self.current_pos, self.current_vel, obs, c_action,
t + 1 + self.current_traj_steps):
# if self.max_planning_times is not None and self.plan_counts >= self.max_planning_times:
# continue
self.condition_pos = pos if self.desired_conditioning else self.current_pos
self.condition_vel = vel if self.desired_conditioning else self.current_vel
break
infos.update({k: v[:t+1] for k, v in infos.items()})
self.current_traj_steps += t + 1
if self.verbose >= 2:
actions[t, :] = c_action
observations[t, :] = obs
for k, v in info.items():
elems = infos.get(k, [None] * trajectory_length)
elems[t] = v
infos[k] = elems
if self.render_kwargs:
self.env.render(**self.render_kwargs)
if done or self.replanning_schedule(self.current_pos, self.current_vel, obs, c_action,
t + 1 + self.current_traj_steps):
if self.max_planning_times is not None and self.plan_counts >= self.max_planning_times:
continue
self.condition_pos = pos if self.desired_conditioning else self.current_pos
self.condition_vel = vel if self.desired_conditioning else self.current_vel
break
infos.update({k: v[:t+1] for k, v in infos.items()})
self.current_traj_steps += t + 1
if self.verbose >= 2:
infos['desired_pos'] = position[:t+1]
infos['desired_vel'] = velocity[:t+1]
infos['current_pos'] = self.current_pos
infos['current_vel'] = self.current_vel
infos['step_actions'] = actions[:t + 1]
infos['step_observations'] = observations[:t + 1]
infos['step_rewards'] = rewards[:t + 1]
infos['trajectory_length'] = t + 1
trajectory_return = self.reward_aggregation(rewards[:t + 1])
return self.observation(obs), trajectory_return, done, infos
infos['desired_pos'] = position[:t+1]
infos['desired_vel'] = velocity[:t+1]
infos['current_pos'] = self.current_pos
infos['current_vel'] = self.current_vel
infos['step_actions'] = actions[:t + 1]
infos['step_observations'] = observations[:t + 1]
infos['step_rewards'] = rewards[:t + 1]
infos['desired_pos_traj'] = np.array(desired_pos_traj)
infos['desired_vel_traj'] = np.array(desired_vel_traj)
infos['pos_traj'] = np.array(pos_traj)
infos['vel_traj'] = np.array(vel_traj)
infos['trajectory_length'] = t + 1
trajectory_return = self.reward_aggregation(rewards[:t + 1])
return self.observation(obs), trajectory_return, done, infos
else:
obs, trajectory_return, done, infos = self.env.invalid_traj_callback(action, position, velocity)
return self.observation(obs), trajectory_return, done, infos
def render(self, **kwargs):
"""Only set render options here, such that they can be used during the rollout.
This only needs to be called once"""

View File

@ -52,8 +52,7 @@ class RawInterfaceWrapper(gym.Wrapper):
"""
return self.env.dt
def episode_callback(self, action: np.ndarray, traj_gen: MPInterface) -> Tuple[
np.ndarray, Union[np.ndarray, None]]:
def episode_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.array) -> Tuple[bool]:
"""
Used to extract the parameters for the movement primitive and other parameters from an action array which might
include other actions like ball releasing time for the beer pong environment.
@ -65,4 +64,11 @@ class RawInterfaceWrapper(gym.Wrapper):
Returns:
Tuple: mp_arguments and other arguments
"""
return action, None
return True
def invalid_traj_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
"""
Used to return a fake return from the environment if the desired trajectory is invalid.
"""
obs = np.zeros(1)
return obs, 0, True, {}

View File

@ -28,7 +28,9 @@ DEFAULT_BB_DICT_ProMP = {
'trajectory_generator_type': 'promp'
},
"phase_generator_kwargs": {
'phase_generator_type': 'linear'
'phase_generator_type': 'linear',
'learn_tau': False,
'learn_delay': False,
},
"controller_kwargs": {
'controller_type': 'motor',
@ -40,6 +42,8 @@ DEFAULT_BB_DICT_ProMP = {
'num_basis': 5,
'num_basis_zero_start': 1,
'basis_bandwidth_factor': 3.0,
},
"black_box_kwargs": {
}
}
@ -245,6 +249,18 @@ register(
max_episode_steps=FIXED_RELEASE_STEP,
)
# Table Tennis environments
for ctxt_dim in [2, 4]:
register(
id='TableTennis{}D-v0'.format(ctxt_dim),
entry_point='fancy_gym.envs.mujoco:TableTennisEnv',
max_episode_steps=350,
kwargs={
"ctxt_dim": ctxt_dim,
'frame_skip': 4
}
)
# movement Primitive Environments
## Simple Reacher
@ -515,6 +531,29 @@ for _v in _versions:
kwargs=kwargs_dict_box_pushing_prodmp
)
ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS["ProDMP"].append(_env_id)
## Table Tennis
_versions = ['TableTennis2D-v0', 'TableTennis4D-v0']
for _v in _versions:
_name = _v.split("-")
_env_id = f'{_name[0]}ProMP-{_name[1]}'
kwargs_dict_tt_promp = deepcopy(DEFAULT_BB_DICT_ProMP)
kwargs_dict_tt_promp['wrappers'].append(mujoco.table_tennis.MPWrapper)
kwargs_dict_tt_promp['name'] = _v
kwargs_dict_tt_promp['controller_kwargs']['p_gains'] = 0.5 * np.array([1.0, 4.0, 2.0, 4.0, 1.0, 4.0, 1.0])
kwargs_dict_tt_promp['controller_kwargs']['d_gains'] = 0.5 * np.array([0.1, 0.4, 0.2, 0.4, 0.1, 0.4, 0.1])
kwargs_dict_tt_promp['phase_generator_kwargs']['learn_tau'] = True
kwargs_dict_tt_promp['phase_generator_kwargs']['learn_delay'] = True
kwargs_dict_tt_promp['basis_generator_kwargs']['num_basis'] = 3
kwargs_dict_tt_promp['basis_generator_kwargs']['num_basis_zero_start'] = 2
kwargs_dict_tt_promp['black_box_kwargs']['duration'] = 2.
kwargs_dict_tt_promp['black_box_kwargs']['verbose'] = 2
register(
id=_env_id,
entry_point='fancy_gym.utils.make_env_helpers:make_bb_env_helper',
kwargs=kwargs_dict_tt_promp
)
ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id)
#
# ## Walker2DJump
# _versions = ['Walker2DJump-v0']

View File

@ -8,3 +8,4 @@ from .hopper_throw.hopper_throw_in_basket import HopperThrowInBasketEnv
from .reacher.reacher import ReacherEnv
from .walker_2d_jump.walker_2d_jump import Walker2dJumpEnv
from .box_pushing.box_pushing_env import BoxPushingDense, BoxPushingTemporalSparse, BoxPushingTemporalSpatialSparse
from .table_tennis.table_tennis_env import TableTennisEnv

View File

@ -28,10 +28,10 @@ class MPWrapper(RawInterfaceWrapper):
return self.data.qvel[0:7].copy()
# TODO: Fix this
def episode_callback(self, action: np.ndarray, mp) -> Tuple[np.ndarray, Union[np.ndarray, None]]:
def episode_callback(self, action: np.ndarray, mp) -> Tuple[np.ndarray, Union[np.ndarray, None], bool]:
if mp.learn_tau:
self.release_step = action[0] / self.dt # Tau value
return action, None
return action, None, True
def set_context(self, context):
xyz = np.zeros(3)

View File

@ -3,6 +3,7 @@ from typing import Union, Tuple
import numpy as np
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import jnt_pos_low, jnt_pos_high, delay_bound, tau_bound
class MPWrapper(RawInterfaceWrapper):
@ -13,10 +14,8 @@ class MPWrapper(RawInterfaceWrapper):
return np.hstack([
[False] * 7, # joints position
[False] * 7, # joints velocity
[False] * 3, # position of box
[False] * 4, # orientation of box
[True] * 3, # position of target
[True] * 4, # orientation of target
[False] * 3, # position ball
[True] * 2, # target landing position
# [True] * 1, # time
])
@ -27,3 +26,27 @@ class MPWrapper(RawInterfaceWrapper):
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.data.qvel[:7].copy()
def episode_callback(self, action, pos_traj, vel_traj):
time_invalid = action[0] > tau_bound[1] or action[0] < tau_bound[0] \
or action[1] > delay_bound[1] or action[1] < delay_bound[0]
if time_invalid or np.any(pos_traj > jnt_pos_high) or np.any(pos_traj < jnt_pos_low):
return False
return True
def invalid_traj_callback(self, action, pos_traj: np.ndarray, vel_traj: np.ndarray) \
-> Tuple[np.ndarray, float, bool, dict]:
tau_invalid_penalty = np.max([0, action[0] - tau_bound[1]]) + np.max([0, tau_bound[0] - action[0]])
delay_invalid_penalty = np.max([0, action[1] - delay_bound[1]]) + np.max([0, delay_bound[0] - action[1]])
violate_high_bound_error = np.sum(np.maximum(pos_traj - jnt_pos_high, 0))
violate_low_bound_error = np.sum(np.maximum(jnt_pos_low - pos_traj, 0))
invalid_penalty = tau_invalid_penalty + delay_invalid_penalty + \
violate_high_bound_error + violate_low_bound_error
return self.get_obs(), -invalid_penalty, True, {
"hit_ball": [False],
"ball_returned_success": [False],
"land_dist_error": [10.],
"is_success": [False],
'trajectory_length': 1,
"num_steps": [1]
}

View File

@ -4,6 +4,8 @@ import numpy as np
from gym import utils, spaces
from gym.envs.mujoco import MujocoEnv
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import check_init_state_validity, magnus_force
import mujoco
MAX_EPISODE_STEPS_TABLE_TENNIS = 250
@ -22,10 +24,23 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
utils.EzPickle.__init__(**locals())
self._steps = 0
self.hit_ball = False
self.ball_land_on_table = False
self._hit_ball = False
self._ball_land_on_table = False
self._ball_contact_after_hit = False
self._ball_return_success = False
self._ball_landing_pos = None
self._init_ball_state = None
self._episode_end = False
self._id_set = False
# reward calculation
self.ball_landing_pos = None
self._goal_pos = np.zeros(2)
self._ball_traj = []
self._racket_traj = []
MujocoEnv.__init__(self,
model_path=os.path.join(os.path.dirname(__file__), "assets", "xml", "table_tennis_env.xml"),
frame_skip=frame_skip,
@ -40,11 +55,11 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
self.action_space = spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32)
def _set_ids(self):
self._floor_contact_id = self.model.geom("floor").bodyid[0]
self._ball_contact_id = self.model.geom("target_ball_contact").bodyid[0]
self._bat_front_id = self.model.geom("bat").bodyid[0]
self._bat_back_id = self.model.geom("bat_back").bodyid[0]
self._table_contact_id = self.model.geom("table_tennis_table").bodyid[0]
self._floor_contact_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_GEOM, "floor")
self._ball_contact_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_GEOM, "target_ball_contact")
self._bat_front_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_GEOM, "bat")
self._bat_back_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_GEOM, "bat_back")
self._table_contact_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_GEOM, "table_tennis_table")
self._id_set = True
def step(self, action):
@ -53,40 +68,55 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
unstable_simulation = False
done = False
for _ in range(self.frame_skip):
try:
self.do_simulation(action, self.frame_skip)
self.do_simulation(action, 1)
except Exception as e:
print("Simulation get unstable return with MujocoException: ", e)
unstable_simulation = True
self._episode_end = True
break
if not self.hit_ball:
self.hit_ball = self._contact_checker(self._ball_contact_id, self._bat_front_id) or \
if not self._hit_ball:
self._hit_ball = self._contact_checker(self._ball_contact_id, self._bat_front_id) or \
self._contact_checker(self._ball_contact_id, self._bat_back_id)
if not self.hit_ball:
if not self._hit_ball:
ball_land_on_floor_no_hit = self._contact_checker(self._ball_contact_id, self._floor_contact_id)
if ball_land_on_floor_no_hit:
self.ball_landing_pos = self.data.body("target_ball").xpos.copy()
done = True
if self.hit_ball and not self.ball_contact_after_hit:
if not self.ball_contact_after_hit:
self._ball_landing_pos = self.data.body("target_ball").xpos.copy()
self._episode_end = True
if self._hit_ball and not self._ball_contact_after_hit:
if not self._ball_contact_after_hit:
if self._contact_checker(self._ball_contact_id, self._floor_contact_id): # first check contact with floor
self.ball_contact_after_hit = True
self.ball_landing_pos = self.sim.data.geom("target_ball_contact").xpos.copy()
self._ball_contact_after_hit = True
self._ball_landing_pos = self.data.geom("target_ball_contact").xpos.copy()
self._episode_end = True
elif self._contact_checker(self._ball_contact_id, self._table_contact_id): # second check contact with table
self.ball_contact_after_hit = True
self.ball_landing_pos = self.sim.data.geom("target_ball_contact").xpos.copy()
if self.ball_landing_pos[0] < 0.: # ball lands on the opponent side
self.ball_return_success = True
self._ball_contact_after_hit = True
self._ball_landing_pos = self.data.geom("target_ball_contact").xpos.copy()
if self._ball_landing_pos[0] < 0.: # ball lands on the opponent side
self._ball_return_success = True
self._episode_end = True
# update ball trajectory & racket trajectory
self._ball_traj.append(self.data.body("target_ball").xpos.copy())
self._racket_traj.append(self.data.geom("bat").xpos.copy())
self._steps += 1
episode_end = True if self._steps >= MAX_EPISODE_STEPS_TABLE_TENNIS else False
self._episode_end = True if self._steps >= MAX_EPISODE_STEPS_TABLE_TENNIS else self._episode_end
obs = self._get_obs()
reward = -25 if unstable_simulation else self._get_reward(self._episode_end)
return obs, 0., False, {}
land_dist_err = np.linalg.norm(self._ball_landing_pos[:-1] - self._goal_pos) \
if self._ball_landing_pos is not None else 10.
return self._get_obs(), reward, self._episode_end, {
"hit_ball": self._hit_ball,
"ball_returned_success": self._ball_return_success,
"land_dist_error": land_dist_err,
"is_success": self._ball_return_success and land_dist_err < 0.2,
"num_steps": self._steps,
}
def _contact_checker(self, id_1, id_2):
for coni in range(0, self.data.ncon):
@ -97,31 +127,94 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
def reset_model(self):
self._steps = 0
new_context = self._sample_context()
self.data.joint("tar_x").qpos = new_context[0]
self.data.joint("tar_y").qpos = new_context[1]
self.data.joint("tar_z").qvel = 2.
self._init_ball_state = self._generate_valid_init_ball(random_pos=False, random_vel=False)
self._goal_pos = self.np_random.uniform(low=self.context_bounds[0][-2:], high=self.context_bounds[1][-2:])
self.data.joint("tar_x").qpos = self._init_ball_state[0]
self.data.joint("tar_y").qpos = self._init_ball_state[1]
self.data.joint("tar_z").qpos = self._init_ball_state[2]
self.data.joint("tar_x").qvel = self._init_ball_state[3]
self.data.joint("tar_y").qvel = self._init_ball_state[4]
self.data.joint("tar_z").qvel = self._init_ball_state[5]
self.ball_landing_pos = None
self.hit_ball = False
self.model.body_pos[5] = np.concatenate([self._goal_pos, [0.77]])
self.data.qpos[:7] = np.array([0., 0., 0., 1.5, 0., 0., 1.5])
mujoco.mj_forward(self.model, self.data)
self._hit_ball = False
self._ball_land_on_table = False
self._ball_contact_after_hit = False
self._ball_return_success = False
self._ball_landing_pos = None
self._episode_end = False
self._ball_traj = []
self._racket_traj = []
return self._get_obs()
def _sample_context(self):
return self.np_random.uniform(low=self.context_bounds[0],
high=self.context_bounds[1])
def _get_obs(self):
obs = np.concatenate([
self.data.qpos.flat[:7],
self.data.qvel.flat[:7],
self.data.qpos.flat[:7].copy(),
self.data.qvel.flat[:7].copy(),
self.data.joint("tar_x").qpos.copy(),
self.data.joint("tar_y").qpos.copy(),
self.data.joint("tar_z").qpos.copy(),
# self.data.body("target_ball").xvel.copy(),
self._goal_pos.copy(),
])
return obs
def get_obs(self):
return self._get_obs()
def _get_reward(self, episode_end):
if not episode_end:
return 0
else:
min_r_b_dist = np.min(np.linalg.norm(np.array(self._ball_traj) - np.array(self._racket_traj), axis=1))
if not self._hit_ball:
return 0.2 * (1 - np.tanh(min_r_b_dist**2))
else:
if self._ball_landing_pos is None:
min_b_des_b_dist = np.min(np.linalg.norm(np.array(self._ball_traj)[:,:2] - self._goal_pos[:2], axis=1))
return 2 * (1 - np.tanh(min_r_b_dist ** 2)) + (1 - np.tanh(min_b_des_b_dist**2))
else:
min_b_des_b_land_dist = np.linalg.norm(self._goal_pos[:2] - self._ball_landing_pos[:2])
over_net_bonus = int(self._ball_landing_pos[0] < 0)
return 2 * (1 - np.tanh(min_r_b_dist ** 2)) + 4 * (1 - np.tanh(min_b_des_b_land_dist ** 2)) + over_net_bonus
def _generate_random_ball(self, random_pos=False, random_vel=False):
x_pos, y_pos, z_pos = -0.5, 0.35, 1.75
x_vel, y_vel, z_vel = 2.5, 0., 0.5
if random_pos:
x_pos = self.np_random.uniform(low=self.context_bounds[0][0], high=self.context_bounds[1][0], size=1)
y_pos = self.np_random.uniform(low=self.context_bounds[0][1], high=self.context_bounds[1][1], size=1)
if random_vel:
x_vel = self.np_random.uniform(low=2.0, high=3.0, size=1)
init_ball_state = np.array([x_pos, y_pos, z_pos, x_vel, y_vel, z_vel])
return init_ball_state
def _generate_valid_init_ball(self, random_pos=False, random_vel=False):
init_ball_state = self._generate_random_ball(random_pos=random_pos, random_vel=random_vel)
while not check_init_state_validity(init_ball_state):
init_ball_state = self._generate_random_ball(random_pos=random_pos, random_vel=random_vel)
return init_ball_state
def check_traj_validity(self, traj):
raise NotImplementedError
def get_invalid_steps(self, traj):
penalty = -100
return self._get_obs(), penalty, True, {}
if __name__ == "__main__":
env = TableTennisEnv()
env.reset()
for _ in range(1000):
for _ in range(200):
obs = env.reset()
for _ in range(2000):
env.render("human")
env.step(env.action_space.sample())
obs, reward, done, info = env.step(np.zeros(7))
print(reward)
if done:
break

View File

@ -1 +1,51 @@
import numpy as np
jnt_pos_low = np.array([-2.6, -2.0, -2.8, -0.9, -4.8, -1.6, -2.2])
jnt_pos_high = np.array([2.6, 2.0, 2.8, 3.1, 1.3, 1.6, 2.2])
delay_bound = [0.05, 0.3]
tau_bound = [0.5, 1.5]
net_height = 0.1
table_height = 0.77
table_x_min = -1.1
table_x_max = 1.1
table_y_min = -0.6
table_y_max = 0.6
g = 9.81
def check_init_state_validity(init_state):
assert len(init_state) == 6, "init_state must be a 6D vector (pos+vel),got {}".format(init_state)
x = init_state[0]
y = init_state[1]
z = init_state[2] - table_height + 0.1
v_x = init_state[3]
v_y = init_state[4]
v_z = init_state[5]
# check if the initial state is wrong
if x > -0.2:
return False
# check if the ball velocity direction is wrong
if v_x < 0.:
return False
# check if the ball can pass the net
t_n = (-2.*(-v_z)/g + np.sqrt(4*(v_z**2)/g**2 - 8*(net_height-z)/g))/2.
if x + v_x * t_n < 0.05:
return False
# check if ball landing position will violate x bounds
t_l = (-2.*(-v_z)/g + np.sqrt(4*(v_z**2)/g**2 + 8*(z)/g))/2.
if x + v_x * t_l > table_x_max:
return False
# check if ball landing position will violate y bounds
if y + v_y * t_l > table_y_max or y + v_y * t_l < table_y_min:
return False
return True
def magnus_force(top_spin=0.0, side_spin=0.0, v_ball=np.zeros(3), v_wind=np.zeros(3)):
rho = 1.225 # Air density
A = 1.256 * 10e-3 # Cross-section area of ball
C_l = 4.68 * 10e-4 - 2.0984 * 10e-5 * (np.linalg.norm(v_ball) - 50) # Lift force coeffient or simply 1.23
w = np.array([0.0, top_spin, side_spin]) # Angular velocity of ball
f_m = 0.5 * rho * A * C_l * np.linalg.norm(v_ball-v_wind) * np.cross(w, v_ball-v_wind)
return f_m

View File

@ -157,17 +157,18 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
if __name__ == '__main__':
render = True
# DMP
example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)
# example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)
# ProMP
example_mp("HoleReacherProMP-v0", seed=10, iterations=5, render=render)
example_mp("BoxPushingTemporalSparseProMP-v0", seed=10, iterations=1, render=render)
# example_mp("HoleReacherProMP-v0", seed=10, iterations=5, render=render)
# example_mp("BoxPushingTemporalSparseProMP-v0", seed=10, iterations=1, render=render)
example_mp("TableTennis4DProMP-v0", seed=10, iterations=5, render=render)
# ProDMP
example_mp("BoxPushingDenseProDMP-v0", seed=10, iterations=16, render=render)
# example_mp("BoxPushingDenseProDMP-v0", seed=10, iterations=16, render=render)
# Altered basis functions
obs1 = example_custom_mp("Reacher5dProMP-v0", seed=10, iterations=1, render=render)
# obs1 = example_custom_mp("Reacher5dProMP-v0", seed=10, iterations=1, render=render)
# Custom MP
example_fully_custom_mp(seed=10, iterations=1, render=render)
# example_fully_custom_mp(seed=10, iterations=1, render=render)