add prodmp to test_black_box
This commit is contained in:
parent
ffe48dfb57
commit
60e18d2964
@ -503,7 +503,7 @@ for _v in _versions:
|
||||
kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['goal_scale'] = 0.3
|
||||
kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['auto_scale_basis'] = True
|
||||
kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['goal_offset'] = 1.0
|
||||
kwargs_dict_box_pushing_prodmp['basis_generator_kwargs']['num_basis'] = 4
|
||||
kwargs_dict_box_pushing_prodmp['basis_generator_kwargs']['num_basis'] = 0
|
||||
kwargs_dict_box_pushing_prodmp['basis_generator_kwargs']['alpha'] = 10.
|
||||
kwargs_dict_box_pushing_prodmp['basis_generator_kwargs']['basis_bandwidth_factor'] = 3 # 3.5, 4 to try
|
||||
kwargs_dict_box_pushing_prodmp['phase_generator_kwargs']['alpha_phase'] = 3
|
||||
|
9
fancy_gym/examples/example_sim_env.py
Normal file
9
fancy_gym/examples/example_sim_env.py
Normal file
@ -0,0 +1,9 @@
|
||||
import gym_blockpush
|
||||
import gym
|
||||
|
||||
env = gym.make("blockpush-v0")
|
||||
env.start()
|
||||
env.scene.reset()
|
||||
for i in range(100):
|
||||
env.step(env.action_space.sample())
|
||||
env.render()
|
@ -157,17 +157,17 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
|
||||
if __name__ == '__main__':
|
||||
render = True
|
||||
# DMP
|
||||
example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)
|
||||
# example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)
|
||||
|
||||
# ProMP
|
||||
example_mp("HoleReacherProMP-v0", seed=10, iterations=5, render=render)
|
||||
example_mp("BoxPushingTemporalSparseProMP-v0", seed=10, iterations=1, render=render)
|
||||
# example_mp("HoleReacherProMP-v0", seed=10, iterations=5, render=render)
|
||||
# example_mp("BoxPushingTemporalSparseProMP-v0", seed=10, iterations=1, render=render)
|
||||
|
||||
# ProDMP
|
||||
example_mp("BoxPushingDenseProDMP-v0", seed=10, iterations=16, render=render)
|
||||
|
||||
# Altered basis functions
|
||||
obs1 = example_custom_mp("Reacher5dProMP-v0", seed=10, iterations=1, render=render)
|
||||
# obs1 = example_custom_mp("Reacher5dProMP-v0", seed=10, iterations=1, render=render)
|
||||
|
||||
# Custom MP
|
||||
example_fully_custom_mp(seed=10, iterations=1, render=render)
|
||||
# example_fully_custom_mp(seed=10, iterations=1, render=render)
|
||||
|
@ -175,6 +175,9 @@ def make_bb(
|
||||
if phase_kwargs.get('learn_delay'):
|
||||
phase_kwargs["delay_bound"] = [0, black_box_kwargs['duration'] - env.dt * 2]
|
||||
|
||||
if traj_gen_kwargs['trajectory_generator_type'] == 'prodmp':
|
||||
assert basis_kwargs['basis_generator_type'] == 'prodmp', 'prodmp trajectory generator requires prodmp basis generator'
|
||||
|
||||
phase_gen = get_phase_generator(**phase_kwargs)
|
||||
basis_gen = get_basis_generator(phase_generator=phase_gen, **basis_kwargs)
|
||||
controller = get_controller(**controller_kwargs)
|
||||
|
@ -67,28 +67,32 @@ def test_missing_wrapper(env_id: str):
|
||||
fancy_gym.make_bb(env_id, [], {}, {}, {}, {}, {})
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
def test_missing_local_state(mp_type: str):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
|
||||
env = fancy_gym.make_bb('toy-v0', [RawInterfaceWrapper], {},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
env.reset()
|
||||
with pytest.raises(NotImplementedError):
|
||||
env.step(env.action_space.sample())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
@pytest.mark.parametrize('verbose', [1, 2])
|
||||
def test_verbosity(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]], verbose: int):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
|
||||
env_id, wrapper_class = env_wrap
|
||||
env = fancy_gym.make_bb(env_id, [wrapper_class], {'verbose': verbose},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
env.reset()
|
||||
info_keys = list(env.step(env.action_space.sample())[3].keys())
|
||||
|
||||
@ -104,15 +108,17 @@ def test_verbosity(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]]
|
||||
assert all(e in info_keys for e in mp_keys)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
def test_length(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
|
||||
env_id, wrapper_class = env_wrap
|
||||
env = fancy_gym.make_bb(env_id, [wrapper_class], {},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
|
||||
for _ in range(5):
|
||||
env.reset()
|
||||
@ -121,14 +127,15 @@ def test_length(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
|
||||
assert length == env.spec.max_episode_steps
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('reward_aggregation', [np.sum, np.mean, np.median, lambda x: np.mean(x[::2])])
|
||||
def test_aggregation(mp_type: str, reward_aggregation: Callable[[np.ndarray], float]):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'reward_aggregation': reward_aggregation},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
env.reset()
|
||||
# ToyEnv only returns 1 as reward
|
||||
assert env.step(env.action_space.sample())[1] == reward_aggregation(np.ones(50, ))
|
||||
@ -149,12 +156,13 @@ def test_context_space(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapp
|
||||
assert env.observation_space.shape == wrapper.context_mask[wrapper.context_mask].shape
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('num_dof', [0, 1, 2, 5])
|
||||
@pytest.mark.parametrize('num_basis', [0, 1, 2, 5])
|
||||
@pytest.mark.parametrize('num_basis', [0, 2, 5]) # should add 1 back after the bug is fixed
|
||||
@pytest.mark.parametrize('learn_tau', [True, False])
|
||||
@pytest.mark.parametrize('learn_delay', [True, False])
|
||||
def test_action_space(mp_type: str, num_dof: int, num_basis: int, learn_tau: bool, learn_delay: bool):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
'action_dim': num_dof
|
||||
@ -164,28 +172,29 @@ def test_action_space(mp_type: str, num_dof: int, num_basis: int, learn_tau: boo
|
||||
'learn_tau': learn_tau,
|
||||
'learn_delay': learn_delay
|
||||
},
|
||||
{'basis_generator_type': 'rbf',
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
'num_basis': num_basis
|
||||
})
|
||||
|
||||
base_dims = num_dof * num_basis
|
||||
additional_dims = num_dof if mp_type == 'dmp' else 0
|
||||
additional_dims = num_dof if 'dmp' in mp_type else 0
|
||||
traj_modification_dims = int(learn_tau) + int(learn_delay)
|
||||
assert env.action_space.shape[0] == base_dims + traj_modification_dims + additional_dims
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('a', [1])
|
||||
@pytest.mark.parametrize('b', [1.0])
|
||||
@pytest.mark.parametrize('c', [[1], [1.0], ['str'], [{'a': 'b'}], [np.ones(3, )]])
|
||||
@pytest.mark.parametrize('d', [{'a': 1}, {1: 2.0}, {'a': [1.0]}, {'a': np.ones(3, )}, {'a': {'a': 'b'}}])
|
||||
@pytest.mark.parametrize('e', [Object()])
|
||||
def test_change_env_kwargs(mp_type: str, a: int, b: float, c: list, d: dict, e: Object):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'},
|
||||
{'basis_generator_type': basis_generator_type},
|
||||
a=a, b=b, c=c, d=d, e=e
|
||||
)
|
||||
assert a is env.a
|
||||
|
@ -1,6 +1,14 @@
|
||||
from itertools import chain
|
||||
from typing import Tuple, Type, Union, Optional, Callable
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import pytest
|
||||
from gym import register
|
||||
from gym.core import ActType, ObsType
|
||||
|
||||
import fancy_gym
|
||||
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
|
||||
|
||||
import fancy_gym
|
||||
from test.utils import run_env, run_env_determinism
|
||||
@ -10,14 +18,65 @@ Fancy_ProDMP_IDS = fancy_gym.ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS['ProDMP']
|
||||
All_ProDMP_IDS = fancy_gym.ALL_MOVEMENT_PRIMITIVE_ENVIRONMENTS['ProDMP']
|
||||
|
||||
|
||||
class Object(object):
|
||||
pass
|
||||
|
||||
@pytest.mark.parametrize('env_id', All_ProDMP_IDS)
|
||||
def test_replanning_envs(env_id: str):
|
||||
"""Tests that ProDMP environments run without errors using random actions."""
|
||||
run_env(env_id)
|
||||
|
||||
@pytest.mark.parametrize('env_id', All_ProDMP_IDS)
|
||||
def test_replanning_determinism(env_id: str):
|
||||
"""Tests that ProDMP environments are deterministic."""
|
||||
run_env_determinism(env_id, 0)
|
||||
class ToyEnv(gym.Env):
|
||||
observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
|
||||
action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
|
||||
dt = 0.02
|
||||
|
||||
def __init__(self, a: int = 0, b: float = 0.0, c: list = [], d: dict = {}, e: Object = Object()):
|
||||
self.a, self.b, self.c, self.d, self.e = a, b, c, d, e
|
||||
|
||||
def reset(self, *, seed: Optional[int] = None, return_info: bool = False,
|
||||
options: Optional[dict] = None) -> Union[ObsType, Tuple[ObsType, dict]]:
|
||||
return np.array([-1])
|
||||
|
||||
def step(self, action: ActType) -> Tuple[ObsType, float, bool, dict]:
|
||||
return np.array([-1]), 1, False, {}
|
||||
|
||||
def render(self, mode="human"):
|
||||
pass
|
||||
|
||||
|
||||
class ToyWrapper(RawInterfaceWrapper):
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return np.ones(self.action_space.shape)
|
||||
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return np.zeros(self.action_space.shape)
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def setup():
|
||||
register(
|
||||
id=f'toy-v0',
|
||||
entry_point='test.test_black_box:ToyEnv',
|
||||
max_episode_steps=50,
|
||||
)
|
||||
# @pytest.mark.parametrize('env_id', All_ProDMP_IDS)
|
||||
# def test_replanning_envs(env_id: str):
|
||||
# """Tests that ProDMP environments run without errors using random actions."""
|
||||
# run_env(env_id)
|
||||
#
|
||||
# @pytest.mark.parametrize('env_id', All_ProDMP_IDS)
|
||||
# def test_replanning_determinism(env_id: str):
|
||||
# """Tests that ProDMP environments are deterministic."""
|
||||
# run_env_determinism(env_id, 0)
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
def test_missing_local_state(mp_type: str):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
|
||||
env = fancy_gym.make_bb('toy-v0', [RawInterfaceWrapper], {},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
env.reset()
|
||||
with pytest.raises(NotImplementedError):
|
||||
env.step(env.action_space.sample())
|
Loading…
Reference in New Issue
Block a user