adjusted classic control environments to new interface
This commit is contained in:
parent
95e9b8be47
commit
6ae195962c
@ -1,6 +1,7 @@
|
||||
from gym.envs.registration import register
|
||||
|
||||
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
||||
|
||||
# from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||
|
||||
# Mujoco
|
||||
@ -71,6 +72,17 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
## Balancing Reacher
|
||||
|
||||
register(
|
||||
id='Balancing-v0',
|
||||
entry_point='alr_envs.mujoco:BalancingEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ALRBallInACupSimple-v0',
|
||||
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
|
||||
@ -101,15 +113,7 @@ register(
|
||||
|
||||
# Classic control
|
||||
|
||||
register(
|
||||
id='Balancing-v0',
|
||||
entry_point='alr_envs.mujoco:BalancingEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
}
|
||||
)
|
||||
|
||||
## Simple Reacher
|
||||
register(
|
||||
id='SimpleReacher-v0',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
@ -129,25 +133,6 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='EpisodicSimpleReacher-v0',
|
||||
entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 2,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='EpisodicSimpleReacher-v1',
|
||||
entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 2,
|
||||
"random_start": False
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='LongSimpleReacher-v0',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
@ -157,6 +142,18 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='LongSimpleReacher-v1',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"random_start": False
|
||||
}
|
||||
)
|
||||
|
||||
## Viapoint Reacher
|
||||
|
||||
register(
|
||||
id='ViaPointReacher-v0',
|
||||
entry_point='alr_envs.classic_control.viapoint_reacher:ViaPointReacher',
|
||||
@ -168,27 +165,45 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
## Hole Reacher
|
||||
register(
|
||||
id='HoleReacher-v0',
|
||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacher',
|
||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"allow_self_collision": False,
|
||||
"allow_wall_collision": False,
|
||||
"hole_width": 0.25,
|
||||
"hole_width": None,
|
||||
"hole_depth": 1,
|
||||
"hole_x": 2,
|
||||
"hole_x": None,
|
||||
"collision_penalty": 100,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacher-v1',
|
||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"random_start": False,
|
||||
"allow_self_collision": False,
|
||||
"allow_wall_collision": False,
|
||||
"hole_width": None,
|
||||
"hole_depth": 1,
|
||||
"hole_x": None,
|
||||
"collision_penalty": 100,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacher-v2',
|
||||
entry_point='alr_envs.classic_control.hole_reacher_v2:HoleReacher',
|
||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"random_start": False,
|
||||
"allow_self_collision": False,
|
||||
"allow_wall_collision": False,
|
||||
"hole_width": 0.25,
|
||||
@ -199,38 +214,24 @@ register(
|
||||
)
|
||||
|
||||
# MP environments
|
||||
|
||||
register(
|
||||
id='SimpleReacherDMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": "alr_envs:EpisodicSimpleReacher-v0",
|
||||
"num_dof": 2,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"alpha_phase": 2,
|
||||
"learn_goal": True,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='SimpleReacherDMP-v1',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": "alr_envs:EpisodicSimpleReacher-v1",
|
||||
"num_dof": 2,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"alpha_phase": 2,
|
||||
"learn_goal": True,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
}
|
||||
)
|
||||
reacher_envs = ["SimpleReacher-v0", "SimpleReacher-v1", "LongSimpleReacher-v0", "LongSimpleReacher-v1"]
|
||||
for env in reacher_envs:
|
||||
name = env.split("-")
|
||||
register(
|
||||
id=f'{name[0]}DMP-{name[1]}',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": f"alr_envs:{env}",
|
||||
"num_dof": 2 if "long" not in env.lower() else 5 ,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"alpha_phase": 2,
|
||||
"learn_goal": True,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ViaPointReacherDMP-v0',
|
||||
@ -266,6 +267,24 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacherDMP-v1',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": "alr_envs:HoleReacher-v1",
|
||||
"num_dof": 5,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"learn_goal": True,
|
||||
"alpha_phase": 2,
|
||||
"bandwidth_factor": 2,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
"goal_scale": 0.1
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacherDMP-v2',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
|
@ -1,4 +1,4 @@
|
||||
from alr_envs.classic_control.simple_reacher import SimpleReacherEnv
|
||||
from alr_envs.classic_control.episodic_simple_reacher import EpisodicSimpleReacherEnv
|
||||
from alr_envs.classic_control.viapoint_reacher import ViaPointReacher
|
||||
from alr_envs.classic_control.hole_reacher import HoleReacher
|
||||
from alr_envs.classic_control.hole_reacher import HoleReacherEnv
|
||||
|
@ -35,7 +35,7 @@ class EpisodicSimpleReacherEnv(SimpleReacherEnv):
|
||||
|
||||
def _get_obs(self):
|
||||
if self.random_start:
|
||||
theta = self._joint_angle
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
|
@ -10,11 +10,12 @@ from alr_envs.classic_control.utils import check_self_collision
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
|
||||
|
||||
class HoleReacher(MPEnv):
|
||||
class HoleReacherEnv(MPEnv):
|
||||
|
||||
def __init__(self, n_links, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = True, allow_self_collision: bool = False,
|
||||
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
|
||||
allow_wall_collision: bool = False, collision_penalty: bool = 1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
@ -25,10 +26,11 @@ class HoleReacher(MPEnv):
|
||||
self._hole_width = hole_width # width of hole
|
||||
self._hole_depth = hole_depth # depth of hole
|
||||
|
||||
# temp containers to store current setting
|
||||
# temp container for current env state
|
||||
self._tmp_hole_x = None
|
||||
self._tmp_hole_width = None
|
||||
self._tmp_hole_depth = None
|
||||
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
@ -36,14 +38,13 @@ class HoleReacher(MPEnv):
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._joints = None
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.dt = 0.01
|
||||
# self.time_limit = 2
|
||||
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
@ -58,54 +59,43 @@ class HoleReacher(MPEnv):
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
plt.ion()
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human", "partial"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def corrected_obs_index(self):
|
||||
return np.hstack([
|
||||
[self.random_start] * self.n_links, # cos
|
||||
[self.random_start] * self.n_links, # sin
|
||||
[self.random_start] * self.n_links, # velocity
|
||||
[self._hole_width is None], # hole width
|
||||
[self._hole_depth is None], # hole width
|
||||
[True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with an action in joint velocity space
|
||||
"""
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
self._angle_velocity = action
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
acc = (action - self._angle_velocity) / self.dt
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
def _generate_hole(self):
|
||||
hole_x = self.np_random.uniform(0.5, 3.5, 1) if self._hole_x is None else np.copy(self._hole_x)
|
||||
hole_width = self.np_random.uniform(0.5, 0.1, 1) if self._hole_width is None else np.copy(self._hole_width)
|
||||
# TODO we do not want this right now.
|
||||
hole_depth = self.np_random.uniform(1, 1, 1) if self._hole_depth is None else np.copy(self._hole_depth)
|
||||
info.update({"is_collided": self._is_collided})
|
||||
|
||||
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
|
||||
self.top_center_of_hole = np.hstack([hole_x, 0])
|
||||
self.left_wall_edge = np.hstack([hole_x - hole_width / 2, 0])
|
||||
self.right_wall_edge = np.hstack([hole_x + hole_width / 2, 0])
|
||||
self._steps += 1
|
||||
done = self._is_collided
|
||||
|
||||
return hole_x, hole_width, hole_depth
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
if self.random_start:
|
||||
# MAybe change more than dirst seed
|
||||
# Maybe change more than dirst seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._tmp_hole_x, self._tmp_hole_width, self._tmp_hole_depth = self._generate_hole()
|
||||
self.set_patches()
|
||||
self._generate_hole()
|
||||
self._set_patches()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
@ -114,42 +104,14 @@ class HoleReacher(MPEnv):
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
a single step with an action in joint velocity space
|
||||
"""
|
||||
vel = action # + 0.01 * np.random.randn(self.num_links)
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = vel
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
|
||||
self._update_joints()
|
||||
|
||||
# rew = self._reward()
|
||||
|
||||
# compute reward directly in step function
|
||||
|
||||
success = False
|
||||
reward = 0
|
||||
if not self._is_collided:
|
||||
# return reward only in last time step
|
||||
if self._steps == 199:
|
||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
reward = - dist ** 2
|
||||
success = dist < 0.005
|
||||
else:
|
||||
# Episode terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
reward = - dist ** 2 - self.collision_penalty
|
||||
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
|
||||
info = {"is_collided": self._is_collided, "is_success": success}
|
||||
|
||||
self._steps += 1
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
def _generate_hole(self):
|
||||
self._tmp_hole_x = self.np_random.uniform(0.5, 3.5, 1) if self._hole_x is None else np.copy(self._hole_x)
|
||||
self._tmp_hole_width = self.np_random.uniform(0.5, 0.1, 1) if self._hole_width is None else np.copy(
|
||||
self._hole_width)
|
||||
# TODO we do not want this right now.
|
||||
self._tmp_hole_depth = self.np_random.uniform(1, 1, 1) if self._hole_depth is None else np.copy(
|
||||
self._hole_depth)
|
||||
self._goal = np.hstack([self._tmp_hole_x, -self._tmp_hole_depth])
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
@ -157,7 +119,7 @@ class HoleReacher(MPEnv):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
|
||||
line_points_in_taskspace = self._get_forward_kinematics(num_points_per_link=20)
|
||||
|
||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||
@ -171,23 +133,43 @@ class HoleReacher(MPEnv):
|
||||
self_collision = True
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = self.check_wall_collision(line_points_in_taskspace)
|
||||
wall_collision = self._check_wall_collision(line_points_in_taskspace)
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
def _get_reward(self, acc: np.ndarray):
|
||||
success = False
|
||||
reward = -np.inf
|
||||
if not self._is_collided:
|
||||
dist = 0
|
||||
# return reward only in last time step
|
||||
if self._steps == 199:
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
success = dist < 0.005
|
||||
else:
|
||||
# Episode terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
reward = -self.collision_penalty
|
||||
|
||||
reward -= dist ** 2
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
info = {"is_success": success}
|
||||
|
||||
return reward, info
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self._hole_width,
|
||||
self._hole_depth,
|
||||
self.end_effector - self.bottom_center_of_hole,
|
||||
self._tmp_hole_width,
|
||||
self._tmp_hole_depth,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
def get_forward_kinematics(self, num_points_per_link=1):
|
||||
def _get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
|
||||
@ -206,7 +188,7 @@ class HoleReacher(MPEnv):
|
||||
|
||||
return np.squeeze(end_effector + self._joints[0, :])
|
||||
|
||||
def check_wall_collision(self, line_points):
|
||||
def _check_wall_collision(self, line_points):
|
||||
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] < (self._tmp_hole_x - self._tmp_hole_width / 2))
|
||||
@ -240,6 +222,7 @@ class HoleReacher(MPEnv):
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
@ -250,74 +233,74 @@ class HoleReacher(MPEnv):
|
||||
ax.set_ylim([-1.1, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
self.set_patches()
|
||||
self._set_patches()
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(
|
||||
f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||
|
||||
if mode == "human":
|
||||
self.fig.gca().set_title(
|
||||
f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
# Arm
|
||||
self.line.set_xdata(self._joints[:, 0])
|
||||
self.line.set_ydata(self._joints[:, 1])
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
# self.fig.show()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps == 1:
|
||||
# fig, ax = plt.subplots()
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
# plt.pause(0.01)
|
||||
|
||||
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
|
||||
# ax.plot(line_points_in_taskspace[:, 0, 0],
|
||||
# line_points_in_taskspace[:, 0, 1],
|
||||
# line_points_in_taskspace[:, -1, 0],
|
||||
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
|
||||
alpha=self._steps / 200)
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-1.1, lim])
|
||||
plt.pause(0.01)
|
||||
|
||||
elif mode == "final":
|
||||
if self._steps == 199 or self._is_collided:
|
||||
# fig, ax = plt.subplots()
|
||||
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
|
||||
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
def set_patches(self):
|
||||
def _set_patches(self):
|
||||
if self.fig is not None:
|
||||
self.fig.gca().patches = []
|
||||
rect_1 = patches.Rectangle((-self.n_links, -1), self.n_links + self._tmp_hole_x - self._tmp_hole_width / 2,
|
||||
1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_2 = patches.Rectangle((self._tmp_hole_x + self._tmp_hole_width / 2, -1),
|
||||
self.n_links - self._tmp_hole_x + self._tmp_hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_3 = patches.Rectangle((self._tmp_hole_x - self._tmp_hole_width / 2, -1), self._tmp_hole_width,
|
||||
1 - self._tmp_hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
left_block = patches.Rectangle((-self.n_links, -self._tmp_hole_depth),
|
||||
self.n_links + self._tmp_hole_x - self._tmp_hole_width / 2,
|
||||
self._tmp_hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
right_block = patches.Rectangle((self._tmp_hole_x + self._tmp_hole_width / 2, -self._tmp_hole_depth),
|
||||
self.n_links - self._tmp_hole_x + self._tmp_hole_width / 2,
|
||||
self._tmp_hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
hole_floor = patches.Rectangle((self._tmp_hole_x - self._tmp_hole_width / 2, -self._tmp_hole_depth),
|
||||
self._tmp_hole_width,
|
||||
1 - self._tmp_hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
# Add the patch to the Axes
|
||||
self.fig.gca().add_patch(rect_1)
|
||||
self.fig.gca().add_patch(rect_2)
|
||||
self.fig.gca().add_patch(rect_3)
|
||||
self.fig.gca().add_patch(left_block)
|
||||
self.fig.gca().add_patch(right_block)
|
||||
self.fig.gca().add_patch(hole_floor)
|
||||
|
||||
@property
|
||||
def active_obs(self):
|
||||
return np.hstack([
|
||||
[self.random_start] * self.n_links, # cos
|
||||
[self.random_start] * self.n_links, # sin
|
||||
[self.random_start] * self.n_links, # velocity
|
||||
[self._hole_width is None], # hole width
|
||||
[self._hole_depth is None], # hole width
|
||||
[True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self._start_pos
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def close(self):
|
||||
if self.fig is not None:
|
||||
@ -327,20 +310,16 @@ class HoleReacher(MPEnv):
|
||||
if __name__ == '__main__':
|
||||
nl = 5
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = HoleReacher(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=None,
|
||||
hole_depth=1, hole_x=None)
|
||||
env.reset()
|
||||
# env.render(mode=render_mode)
|
||||
env = HoleReacherEnv(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=None,
|
||||
hole_depth=1, hole_x=None)
|
||||
obs = env.reset()
|
||||
|
||||
for i in range(200):
|
||||
# objective.load_result("/tmp/cma")
|
||||
# test with random actions
|
||||
ac = 2 * env.action_space.sample()
|
||||
# ac[0] += np.pi/2
|
||||
obs, rew, d, info = env.step(ac)
|
||||
# if i % 1 == 0:
|
||||
if i == 0:
|
||||
env.render(mode=render_mode)
|
||||
env.render(mode=render_mode)
|
||||
|
||||
print(rew)
|
||||
|
||||
|
@ -1,24 +1,21 @@
|
||||
import gym
|
||||
from typing import Iterable, Union
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
|
||||
from alr_envs.utils.utils import angle_normalize
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
|
||||
|
||||
# if os.environ.get("DISPLAY", None):
|
||||
# mpl.use('Qt5Agg')
|
||||
|
||||
|
||||
class SimpleReacherEnv(gym.Env):
|
||||
class SimpleReacherEnv(MPEnv):
|
||||
"""
|
||||
Simple Reaching Task without any physics simulation.
|
||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||
towards the end of the trajectory.
|
||||
"""
|
||||
|
||||
def __init__(self, n_links, random_start=True):
|
||||
def __init__(self, n_links: int, target: Union[None, Iterable] = None, random_start: bool = True):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
@ -26,17 +23,19 @@ class SimpleReacherEnv(gym.Env):
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
self._goal = None
|
||||
|
||||
self._joints = None
|
||||
self._joint_angle = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = None
|
||||
self._start_pos = np.zeros(self.n_links)
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.max_torque = 1 # 10
|
||||
self._target = target # provided target value
|
||||
self._goal = None # updated goal value, does not change when target != None
|
||||
|
||||
self.max_torque = 1
|
||||
self.steps_before_reward = 199
|
||||
|
||||
action_bound = np.ones((self.n_links,))
|
||||
action_bound = np.ones((self.n_links,)) * self.max_torque
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
@ -47,49 +46,50 @@ class SimpleReacherEnv(gym.Env):
|
||||
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
self.fig = None
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with action in torque space
|
||||
"""
|
||||
|
||||
# action = self._add_action_noise(action)
|
||||
action = np.clip(action, -self.max_torque, self.max_torque)
|
||||
ac = np.clip(action, -self.max_torque, self.max_torque)
|
||||
|
||||
self._angle_velocity = self._angle_velocity + self.dt * action
|
||||
self._joint_angle = angle_normalize(self._joint_angle + self.dt * self._angle_velocity)
|
||||
self._angle_velocity = self._angle_velocity + self.dt * ac
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
self._steps += 1
|
||||
|
||||
reward, info = self._get_reward(action)
|
||||
|
||||
# done = np.abs(self.end_effector - self._goal_pos) < 0.1
|
||||
self._steps += 1
|
||||
done = False
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def _add_action_noise(self, action: np.ndarray):
|
||||
"""
|
||||
add unobserved Gaussian Noise N(0,0.01) to the actions
|
||||
Args:
|
||||
action:
|
||||
def reset(self):
|
||||
|
||||
Returns: actions with noise
|
||||
# TODO: maybe do initialisation more random?
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
self._joint_angles = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
"""
|
||||
return self.np_random.normal(0, 0.1, *action.shape) + action
|
||||
self._generate_goal()
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angle
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
@ -97,7 +97,7 @@ class SimpleReacherEnv(gym.Env):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
angles = np.cumsum(self._joint_angle)
|
||||
angles = np.cumsum(self._joint_angles)
|
||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||
|
||||
@ -105,7 +105,6 @@ class SimpleReacherEnv(gym.Env):
|
||||
diff = self.end_effector - self._goal
|
||||
reward_dist = 0
|
||||
|
||||
# TODO: Is this the best option
|
||||
if self._steps >= self.steps_before_reward:
|
||||
reward_dist -= np.linalg.norm(diff)
|
||||
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
|
||||
@ -115,67 +114,118 @@ class SimpleReacherEnv(gym.Env):
|
||||
reward = reward_dist - reward_ctrl
|
||||
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
|
||||
|
||||
def reset(self):
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
# TODO: maybe do initialisation more random?
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
self._joint_angle = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
||||
def _generate_goal(self):
|
||||
|
||||
if self._target is None:
|
||||
# center = self._joints[0]
|
||||
# # Sample uniformly in circle with radius R around center of reacher.
|
||||
# R = np.sum(self.link_lengths)
|
||||
# r = R * np.sqrt(self.np_random.uniform())
|
||||
# theta = self.np_random.uniform() * 2 * np.pi
|
||||
# goal = center + r * np.stack([np.cos(theta), np.sin(theta)])
|
||||
|
||||
total_length = np.sum(self.link_lengths)
|
||||
goal = np.array([total_length, total_length])
|
||||
while np.linalg.norm(goal) >= total_length:
|
||||
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
|
||||
else:
|
||||
self._joint_angle = np.zeros(self.n_links)
|
||||
goal = np.copy(self._target)
|
||||
|
||||
self._start_pos = self._joint_angle
|
||||
self._angle_velocity = np.zeros(self.n_links)
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
self._goal = goal
|
||||
|
||||
self._goal = self._get_random_goal()
|
||||
return self._get_obs().copy()
|
||||
def render(self, mode='human'): # pragma: no cover
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
def _get_random_goal(self):
|
||||
center = self._joints[0]
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-lim, lim])
|
||||
|
||||
# Sample uniformly in circle with radius R around center of reacher.
|
||||
R = np.sum(self.link_lengths)
|
||||
r = R * np.sqrt(self.np_random.uniform())
|
||||
theta = self.np_random.uniform() * 2 * np.pi
|
||||
return center + r * np.stack([np.cos(theta), np.sin(theta)])
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
goal_pos = self._goal.T
|
||||
self.goal_point, = ax.plot(goal_pos[0], goal_pos[1], 'gx')
|
||||
self.goal_dist, = ax.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
|
||||
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||
|
||||
# goal
|
||||
goal_pos = self._goal.T
|
||||
if self._steps == 1:
|
||||
self.goal_point.set_data(goal_pos[0], goal_pos[1])
|
||||
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
# distance between end effector and goal
|
||||
self.goal_dist.set_data([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]])
|
||||
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
@property
|
||||
def active_obs(self):
|
||||
return np.hstack([
|
||||
[self.random_start] * self.n_links, # cos
|
||||
[self.random_start] * self.n_links, # sin
|
||||
[self.random_start] * self.n_links, # velocity
|
||||
[True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
return self._start_pos
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def render(self, mode='human'): # pragma: no cover
|
||||
if self.fig is None:
|
||||
self.fig = plt.figure()
|
||||
plt.ion()
|
||||
plt.show()
|
||||
else:
|
||||
plt.figure(self.fig.number)
|
||||
|
||||
plt.cla()
|
||||
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
# goal
|
||||
goal_pos = self._goal.T
|
||||
plt.plot(goal_pos[0], goal_pos[1], 'gx')
|
||||
# distance between end effector and goal
|
||||
plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-lim, lim])
|
||||
# plt.draw()
|
||||
# plt.pause(1e-4) pushes window to foreground, which is annoying.
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
def close(self):
|
||||
del self.fig
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
nl = 5
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = SimpleReacherEnv(n_links=nl)
|
||||
obs = env.reset()
|
||||
print("First", obs)
|
||||
|
||||
for i in range(2000):
|
||||
# objective.load_result("/tmp/cma")
|
||||
# test with random actions
|
||||
ac = 2 * env.action_space.sample()
|
||||
# ac = np.ones(env.action_space.shape)
|
||||
obs, rew, d, info = env.step(ac)
|
||||
env.render(mode=render_mode)
|
||||
|
||||
print(obs[env.active_obs].shape)
|
||||
|
||||
if d or i % 200 == 0:
|
||||
env.reset()
|
||||
|
||||
env.close()
|
||||
|
@ -1,19 +1,31 @@
|
||||
from typing import Iterable, Union
|
||||
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym.utils import seeding
|
||||
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
|
||||
|
||||
class ViaPointReacher(gym.Env):
|
||||
class ViaPointReacher(MPEnv):
|
||||
|
||||
def __init__(self, n_links, allow_self_collision=False, collision_penalty=1000):
|
||||
self.num_links = n_links
|
||||
def __init__(self, n_links, random_start: bool = True, via_target: Union[None, Iterable] = None,
|
||||
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
# task
|
||||
self.via_point = np.ones(2)
|
||||
self.goal_point = np.array((n_links, 0))
|
||||
self.random_start = random_start
|
||||
|
||||
# provided initial parameters
|
||||
self._target = target # provided target value
|
||||
self._via_target = via_target # provided via point target value
|
||||
|
||||
# temp container for current env state
|
||||
self._via_point = np.ones(2)
|
||||
self._goal = np.array((n_links, 0))
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
@ -23,78 +35,74 @@ class ViaPointReacher(gym.Env):
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.num_links - 1)])
|
||||
self.start_vel = np.zeros(self.num_links)
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
self.weight_matrix_scale = 1
|
||||
|
||||
self._steps = 0
|
||||
self.dt = 0.01
|
||||
# self.time_limit = 2
|
||||
|
||||
action_bound = np.pi * np.ones((self.num_links,))
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.num_links, # cos
|
||||
[np.pi] * self.num_links, # sin
|
||||
[np.inf] * self.num_links, # velocity
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of via point distance
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
[np.inf] # env steps, because reward start after n steps
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human", "partial"]}
|
||||
self.fig = None
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.num_links].T
|
||||
|
||||
def configure(self, context):
|
||||
pass
|
||||
|
||||
def reset(self):
|
||||
self._joint_angles = self.start_pos
|
||||
self._angle_velocity = self.start_vel
|
||||
self._joints = np.zeros((self.num_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
self.seed()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
a single step with an action in joint velocity space
|
||||
"""
|
||||
vel = action
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = vel
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
|
||||
self._update_joints()
|
||||
|
||||
dist_reward = 0
|
||||
if not self._is_collided:
|
||||
if self._steps == 100:
|
||||
dist_reward = np.linalg.norm(self.end_effector - self.via_point)
|
||||
elif self._steps == 199:
|
||||
dist_reward = np.linalg.norm(self.end_effector - self.goal_point)
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
# TODO: Do we need that?
|
||||
reward = - dist_reward ** 2
|
||||
|
||||
reward -= 5e-8 * np.sum(acc**2)
|
||||
|
||||
if self._is_collided:
|
||||
reward -= self.collision_penalty
|
||||
|
||||
info = {"is_collided": self._is_collided}
|
||||
info.update({"is_collided": self._is_collided})
|
||||
|
||||
self._steps += 1
|
||||
|
||||
# done = self._steps * self.dt > self.time_limit or self._is_collided
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
|
||||
if self.random_start:
|
||||
# Maybe change more than dirst seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._generate_goal()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def _generate_goal(self):
|
||||
self._via_point = self.np_random.uniform(0.5, 3.5, 2) if self._via_target is None else np.copy(self._via_target)
|
||||
self._goal = self.np_random.uniform(0.5, 0.1, 2) if self._target is None else np.copy(self._target)
|
||||
# raise NotImplementedError("How to properly sample points??")
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update _joints to get new end effector position. The other links are only required for rendering.
|
||||
@ -115,14 +123,38 @@ class ViaPointReacher(gym.Env):
|
||||
|
||||
self._is_collided = self_collision
|
||||
|
||||
def _get_reward(self, acc):
|
||||
success = False
|
||||
reward = -np.inf
|
||||
if not self._is_collided:
|
||||
dist = np.inf
|
||||
# return intermediate reward for via point
|
||||
if self._steps == 100:
|
||||
dist = np.linalg.norm(self.end_effector - self._via_point)
|
||||
# return reward in last time step for goal
|
||||
elif self._steps == 199:
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
|
||||
success = dist < 0.005
|
||||
else:
|
||||
# Episode terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
reward = -self.collision_penalty
|
||||
|
||||
reward -= dist ** 2
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
info = {"is_success": success}
|
||||
|
||||
return reward, info
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self.via_point,
|
||||
self.end_effector - self.goal_point,
|
||||
self.end_effector - self._via_point,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
@ -133,7 +165,7 @@ class ViaPointReacher(gym.Env):
|
||||
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
|
||||
endeffector = np.zeros(shape=(self.num_links, num_points_per_link, 2))
|
||||
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
@ -141,33 +173,46 @@ class ViaPointReacher(gym.Env):
|
||||
endeffector[0, :, 0] = x[0, :]
|
||||
endeffector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.num_links):
|
||||
for i in range(1, self.n_links):
|
||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(endeffector + self._joints[0, :])
|
||||
|
||||
def render(self, mode='human'):
|
||||
goal_pos = self._goal.T
|
||||
via_pos = self._via_point.T
|
||||
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
# plt.ion()
|
||||
# plt.pause(0.01)
|
||||
else:
|
||||
plt.figure(self.fig.number)
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-lim, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
self.goal_point_plot, = ax.plot(goal_pos[0], goal_pos[1], 'go')
|
||||
self.via_point_plot, = ax.plot(via_pos[0], via_pos[1], 'gx')
|
||||
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||
|
||||
if mode == "human":
|
||||
plt.cla()
|
||||
plt.title(f"Iteration: {self._steps}")
|
||||
# goal
|
||||
if self._steps == 1:
|
||||
self.goal_point_plot.set_data(goal_pos[0], goal_pos[1])
|
||||
self.via_point_plot.set_data(via_pos[0], goal_pos[1])
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-lim, lim])
|
||||
# plt.draw()
|
||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
||||
# self.fig.canvas.flush_events()
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps == 1:
|
||||
@ -196,12 +241,39 @@ class ViaPointReacher(gym.Env):
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
|
||||
plt.xlim(-self.num_links, self.num_links), plt.ylim(-1, self.num_links)
|
||||
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
@property
|
||||
def active_obs(self):
|
||||
return np.hstack([
|
||||
[self.random_start] * self.n_links, # cos
|
||||
[self.random_start] * self.n_links, # sin
|
||||
[self.random_start] * self.n_links, # velocity
|
||||
[self._via_target is None] * 2, # x-y coordinates of via point distance
|
||||
[True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self._start_pos
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def close(self):
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
||||
|
@ -17,19 +17,8 @@ def make_contextual_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBallInACupEnv(reward_type="contextual_goal")
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=7,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos,
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.5,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
@ -51,19 +40,8 @@ def make_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBallInACupEnv(reward_type="simple")
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=7,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos,
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.2,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.2, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
@ -85,20 +63,8 @@ def make_simple_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBallInACupEnv(reward_type="simple")
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=3,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
off=-0.1,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos[1::2],
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.25,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=3, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.25, zero_start=True, zero_goal=True, off=-0.1)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
|
@ -17,19 +17,8 @@ def make_contextual_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBeerpongEnv()
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=7,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos,
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.5,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
@ -51,19 +40,8 @@ def make_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBeerpongEnvSimple()
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=7,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos,
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.25,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.25, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
@ -85,19 +63,8 @@ def make_simple_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBeerpongEnvSimple()
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=3,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos[1::2],
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.5,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=3, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
|
@ -49,13 +49,13 @@ def make_holereacher_env(rank, seed=0):
|
||||
"""
|
||||
|
||||
def _init():
|
||||
_env = hr.HoleReacher(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.25,
|
||||
hole_depth=1,
|
||||
hole_x=2,
|
||||
collision_penalty=100)
|
||||
_env = hr.HoleReacherEnv(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.25,
|
||||
hole_depth=1,
|
||||
hole_x=2,
|
||||
collision_penalty=100)
|
||||
|
||||
_env = DmpWrapper(_env,
|
||||
num_dof=5,
|
||||
@ -89,13 +89,13 @@ def make_holereacher_fix_goal_env(rank, seed=0):
|
||||
"""
|
||||
|
||||
def _init():
|
||||
_env = hr.HoleReacher(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.15,
|
||||
hole_depth=1,
|
||||
hole_x=1,
|
||||
collision_penalty=100)
|
||||
_env = hr.HoleReacherEnv(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.15,
|
||||
hole_depth=1,
|
||||
hole_x=1,
|
||||
collision_penalty=100)
|
||||
|
||||
_env = DmpWrapper(_env,
|
||||
num_dof=5,
|
||||
@ -129,27 +129,16 @@ def make_holereacher_env_pmp(rank, seed=0):
|
||||
"""
|
||||
|
||||
def _init():
|
||||
_env = hr.HoleReacher(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.15,
|
||||
hole_depth=1,
|
||||
hole_x=1,
|
||||
collision_penalty=1000)
|
||||
_env = hr.HoleReacherEnv(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.15,
|
||||
hole_depth=1,
|
||||
hole_x=1,
|
||||
collision_penalty=1000)
|
||||
|
||||
_env = DetPMPWrapper(_env,
|
||||
num_dof=5,
|
||||
num_basis=5,
|
||||
width=0.02,
|
||||
policy_type="velocity",
|
||||
start_pos=_env._start_pos,
|
||||
duration=2,
|
||||
post_traj_time=0,
|
||||
dt=_env.dt,
|
||||
weights_scale=0.2,
|
||||
zero_start=True,
|
||||
zero_goal=False
|
||||
)
|
||||
_env = DetPMPWrapper(_env, num_dof=5, num_basis=5, width=0.02, duration=2, dt=_env.dt, post_traj_time=0,
|
||||
policy_type="velocity", weights_scale=0.2, zero_start=True, zero_goal=False)
|
||||
_env.seed(seed + rank)
|
||||
return _env
|
||||
|
||||
|
@ -7,22 +7,22 @@ from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||
|
||||
|
||||
class DetPMPWrapper(MPWrapper):
|
||||
def __init__(self, env: MPEnv, num_dof: int, num_basis: int, width: int, start_pos=None, duration: int = 1,
|
||||
dt: float = 0.01, post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
|
||||
def __init__(self, env: MPEnv, num_dof: int, num_basis: int, width: int, duration: int = 1, dt: float = 0.01,
|
||||
post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
|
||||
zero_start: bool = False, zero_goal: bool = False, **mp_kwargs):
|
||||
# self.duration = duration # seconds
|
||||
self.duration = duration # seconds
|
||||
|
||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, num_basis=num_basis,
|
||||
width=width, start_pos=start_pos, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
|
||||
width=width, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
|
||||
|
||||
self.dt = dt
|
||||
|
||||
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
|
||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||
|
||||
self.start_pos = start_pos
|
||||
self.dt = dt
|
||||
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, width: float = None,
|
||||
start_pos: np.ndarray = None, zero_start: bool = False, zero_goal: bool = False):
|
||||
zero_start: bool = False, zero_goal: bool = False):
|
||||
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=0.01,
|
||||
zero_start=zero_start, zero_goal=zero_goal)
|
||||
|
||||
|
@ -63,7 +63,7 @@ class DmpWrapper(MPWrapper):
|
||||
goal_pos = params[0, -self.mp.num_dimensions:] # [num_dof]
|
||||
params = params[:, :-self.mp.num_dimensions] # [1,num_dof]
|
||||
else:
|
||||
goal_pos = self.env.goal_pos # self.mp.dmp_goal_pos.flatten()
|
||||
goal_pos = self.env.goal_pos
|
||||
assert goal_pos is not None
|
||||
|
||||
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape) # [num_basis, num_dof]
|
||||
|
@ -9,7 +9,7 @@ class MPEnv(gym.Env):
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def corrected_obs_index(self):
|
||||
def active_obs(self):
|
||||
"""Returns boolean value for each observation entry
|
||||
whether the observation is returned by the DMP for the contextual case or not.
|
||||
This effectively allows to filter unwanted or unnecessary observations from the full step-based case.
|
||||
|
@ -13,6 +13,12 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
|
||||
super().__init__(env)
|
||||
|
||||
# adjust observation space to reduce version
|
||||
obs_sp = self.env.observation_space
|
||||
self.observation_space = gym.spaces.Box(low=obs_sp.low[self.env.active_obs],
|
||||
high=obs_sp.high[self.env.active_obs],
|
||||
dtype=obs_sp.dtype)
|
||||
|
||||
assert dt is not None # this should never happen as MPWrapper is a base class
|
||||
self.post_traj_steps = int(post_traj_time / dt)
|
||||
|
||||
@ -51,8 +57,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
self.env.configure(context)
|
||||
|
||||
def reset(self):
|
||||
obs = self.env.reset()
|
||||
return obs[self.env]
|
||||
return self.env.reset()[self.env.active_obs]
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
|
||||
@ -82,7 +87,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
break
|
||||
|
||||
done = True
|
||||
return obs, rewards, done, info
|
||||
return obs[self.env.active_obs], rewards, done, info
|
||||
|
||||
def render(self, mode='human', **kwargs):
|
||||
"""Only set render options here, such that they can be used during the rollout.
|
||||
|
@ -46,7 +46,7 @@ def example_dmp():
|
||||
obs = env.reset()
|
||||
|
||||
|
||||
def example_async(n_cpu=4, seed=int('533D', 16)):
|
||||
def example_async(env_id="alr_envs:HoleReacherDMP-v0", n_cpu=4, seed=int('533D', 16)):
|
||||
def make_env(env_id, seed, rank):
|
||||
env = gym.make(env_id)
|
||||
env.seed(seed + rank)
|
||||
@ -73,7 +73,7 @@ def example_async(n_cpu=4, seed=int('533D', 16)):
|
||||
# do not return values above threshold
|
||||
return (*map(lambda v: np.stack(v)[:n_samples], vals.values()),)
|
||||
|
||||
envs = gym.vector.AsyncVectorEnv([make_env("alr_envs:HoleReacherDMP-v0", seed, i) for i in range(n_cpu)])
|
||||
envs = gym.vector.AsyncVectorEnv([make_env(env_id, seed, i) for i in range(n_cpu)])
|
||||
|
||||
obs = envs.reset()
|
||||
print(sample(envs, 16))
|
||||
@ -82,7 +82,6 @@ def example_async(n_cpu=4, seed=int('533D', 16)):
|
||||
if __name__ == '__main__':
|
||||
# example_mujoco()
|
||||
# example_dmp()
|
||||
# example_async()
|
||||
example_async("alr_envs:LongSimpleReacherDMP-v0", 4)
|
||||
# env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1)
|
||||
env = gym.make("alr_envs:SimpleReacherDMP-v1")
|
||||
print()
|
||||
# env = gym.make("alr_envs:HoleReacherDMP-v1")
|
||||
|
Loading…
Reference in New Issue
Block a user