Merge pull request #7 from ALRhub/mp_wrappers_and_stuff
Mp wrappers and stuff
This commit is contained in:
commit
746d408a76
@ -272,12 +272,20 @@ for v in versions:
|
||||
}
|
||||
)
|
||||
|
||||
# register(
|
||||
# id='HoleReacherDetPMP-v0',
|
||||
# entry_point='alr_envs.classic_control.hole_reacher:holereacher_detpmp',
|
||||
# # max_episode_steps=1,
|
||||
# # TODO: add mp kwargs
|
||||
# )
|
||||
register(
|
||||
id=f'HoleReacherDetPMP-{v}',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env',
|
||||
kwargs={
|
||||
"name": f"alr_envs:HoleReacher-{v}",
|
||||
"num_dof": 5,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"width": 0.025,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 0.2,
|
||||
"zero_start": True
|
||||
}
|
||||
)
|
||||
|
||||
# TODO: properly add final_pos
|
||||
register(
|
||||
@ -335,6 +343,41 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ALRBallInACupSimpleDetPMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env',
|
||||
kwargs={
|
||||
"name": "alr_envs:ALRBallInACupSimple-v0",
|
||||
"num_dof": 3,
|
||||
"num_basis": 5,
|
||||
"duration": 3.5,
|
||||
"post_traj_time": 4.5,
|
||||
"width": 0.0035,
|
||||
# "off": -0.05,
|
||||
"policy_type": "motor",
|
||||
"weights_scale": 0.2,
|
||||
"zero_start": True,
|
||||
"zero_goal": True
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ALRBallInACupDetPMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env',
|
||||
kwargs={
|
||||
"name": "alr_envs:ALRBallInACupSimple-v0",
|
||||
"num_dof": 7,
|
||||
"num_basis": 5,
|
||||
"duration": 3.5,
|
||||
"post_traj_time": 4.5,
|
||||
"width": 0.0035,
|
||||
"policy_type": "motor",
|
||||
"weights_scale": 0.2,
|
||||
"zero_start": True,
|
||||
"zero_goal": True
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ALRBallInACupGoalDMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_contextual_env',
|
||||
|
@ -7,10 +7,10 @@ from gym.utils import seeding
|
||||
from matplotlib import patches
|
||||
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
||||
|
||||
|
||||
class HoleReacherEnv(MPEnv):
|
||||
class HoleReacherEnv(AlrEnv):
|
||||
|
||||
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
|
||||
@ -71,14 +71,15 @@ class HoleReacherEnv(MPEnv):
|
||||
A single step with an action in joint velocity space
|
||||
"""
|
||||
|
||||
acc = (action - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = action
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity # + 0.001 * np.random.randn(5)
|
||||
self._update_joints()
|
||||
|
||||
acc = (action - self._angle_velocity) / self.dt
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
info.update({"is_collided": self._is_collided})
|
||||
self.end_effector_traj.append(np.copy(self.end_effector))
|
||||
|
||||
self._steps += 1
|
||||
done = self._is_collided
|
||||
@ -101,6 +102,7 @@ class HoleReacherEnv(MPEnv):
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
self.end_effector_traj = []
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
|
@ -5,10 +5,10 @@ import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
||||
|
||||
|
||||
class SimpleReacherEnv(MPEnv):
|
||||
class SimpleReacherEnv(AlrEnv):
|
||||
"""
|
||||
Simple Reaching Task without any physics simulation.
|
||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||
|
@ -6,10 +6,10 @@ import numpy as np
|
||||
from gym.utils import seeding
|
||||
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
||||
|
||||
|
||||
class ViaPointReacher(MPEnv):
|
||||
class ViaPointReacher(AlrEnv):
|
||||
|
||||
def __init__(self, n_links, random_start: bool = True, via_target: Union[None, Iterable] = None,
|
||||
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
|
||||
|
@ -1,5 +1,6 @@
|
||||
from collections import OrderedDict
|
||||
import os
|
||||
from abc import abstractmethod
|
||||
|
||||
|
||||
from gym import error, spaces
|
||||
@ -142,18 +143,20 @@ class AlrMujocoEnv(gym.Env):
|
||||
# methods to override:
|
||||
# ----------------------------
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def active_obs(self):
|
||||
"""Returns boolean mask for each observation entry
|
||||
whether the observation is returned for the contextual case or not.
|
||||
This effectively allows to filter unwanted or unnecessary observations from the full step-based case.
|
||||
"""
|
||||
return np.ones(self.observation_space.shape, dtype=bool)
|
||||
|
||||
def _get_obs(self):
|
||||
"""Returns the observation.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def configure(self, *args, **kwargs):
|
||||
"""
|
||||
Helper method to set certain environment properties such as contexts in contextual environments since reset()
|
||||
doesn't take arguments. Should be called before reset().
|
||||
"""
|
||||
pass
|
||||
|
||||
def reset_model(self):
|
||||
"""
|
||||
Reset the robot degrees of freedom (qpos and qvel).
|
||||
|
@ -126,6 +126,7 @@
|
||||
<geom name="cup_base" pos="0 -0.035 0.1165" euler="-1.57 0 0" type="cylinder" size="0.038 0.0045" solref="-10000 -100"/>
|
||||
<!-- <geom name="cup_base_contact" pos="0 -0.025 0.1165" euler="-1.57 0 0" type="cylinder" size="0.03 0.0005" solref="-10000 -100" rgba="0 0 255 1"/>-->
|
||||
<geom name="cup_base_contact" pos="0 -0.005 0.1165" euler="-1.57 0 0" type="cylinder" size="0.02 0.0005" solref="-10000 -100" rgba="0 0 255 1"/>
|
||||
<geom name="cup_base_contact_below" pos="0 -0.04 0.1165" euler="-1.57 0 0" type="cylinder" size="0.035 0.001" solref="-10000 -100" rgba="255 0 255 1"/>
|
||||
<!-- <geom name="cup_geom11" pos="0 0.05 0.055" euler="-1.57 0 0" solref="-10000 -100" type="mesh" mesh="cup11" />-->
|
||||
<!-- <geom name="cup_geom12" pos="0 0.05 0.055" euler="-1.57 0 0" solref="-10000 -100" type="mesh" mesh="cup12" />-->
|
||||
<!-- <geom name="cup_geom13" pos="0 0.05 0.055" euler="-1.57 0 0" solref="-10000 -100" type="mesh" mesh="cup13" />-->
|
||||
|
@ -22,7 +22,7 @@ class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
self.j_min = np.array([-2.6, -1.985, -2.8, -0.9, -4.55, -1.5707, -2.7])
|
||||
self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7])
|
||||
|
||||
self.context = None
|
||||
self.context = context
|
||||
|
||||
utils.EzPickle.__init__(self)
|
||||
alr_mujoco_env.AlrMujocoEnv.__init__(self,
|
||||
@ -45,7 +45,6 @@ class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
else:
|
||||
raise ValueError("Unknown reward type")
|
||||
self.reward_function = reward_function(self.sim_steps)
|
||||
self.configure(context)
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
@ -69,10 +68,6 @@ class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
def current_vel(self):
|
||||
return self.sim.data.qvel[0:7].copy()
|
||||
|
||||
def configure(self, context):
|
||||
self.context = context
|
||||
self.reward_function.reset(context)
|
||||
|
||||
def reset_model(self):
|
||||
init_pos_all = self.init_qpos.copy()
|
||||
init_pos_robot = self._start_pos
|
||||
@ -95,26 +90,27 @@ class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
reward_ctrl = - np.square(a).sum()
|
||||
|
||||
crash = self.do_simulation(a)
|
||||
joint_cons_viol = self.check_traj_in_joint_limits()
|
||||
# joint_cons_viol = self.check_traj_in_joint_limits()
|
||||
|
||||
self._q_pos.append(self.sim.data.qpos[0:7].ravel().copy())
|
||||
self._q_vel.append(self.sim.data.qvel[0:7].ravel().copy())
|
||||
|
||||
ob = self._get_obs()
|
||||
|
||||
if not crash and not joint_cons_viol:
|
||||
reward, success, stop_sim = self.reward_function.compute_reward(a, self.sim, self._steps)
|
||||
done = success or self._steps == self.sim_steps - 1 or stop_sim
|
||||
if not crash:
|
||||
reward, success, is_collided = self.reward_function.compute_reward(a, self)
|
||||
done = success or self._steps == self.sim_steps - 1 or is_collided
|
||||
self._steps += 1
|
||||
else:
|
||||
reward = -1000
|
||||
reward = -2
|
||||
success = False
|
||||
is_collided = False
|
||||
done = True
|
||||
return ob, reward, done, dict(reward_dist=reward_dist,
|
||||
reward_ctrl=reward_ctrl,
|
||||
velocity=angular_vel,
|
||||
traj=self._q_pos, is_success=success,
|
||||
is_collided=crash or joint_cons_viol)
|
||||
is_collided=is_collided, sim_crash=crash)
|
||||
|
||||
def check_traj_in_joint_limits(self):
|
||||
return any(self.current_pos > self.j_max) or any(self.current_pos < self.j_min)
|
||||
@ -129,6 +125,16 @@ class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
[self._steps],
|
||||
])
|
||||
|
||||
# TODO
|
||||
@property
|
||||
def active_obs(self):
|
||||
return np.hstack([
|
||||
[False] * 7, # cos
|
||||
[False] * 7, # sin
|
||||
# [True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
|
||||
# These functions are for the task with 3 joint actuations
|
||||
def extend_des_pos(self, des_pos):
|
||||
des_pos_full = self._start_pos.copy()
|
||||
|
@ -6,7 +6,8 @@ class BallInACupReward(alr_reward_fct.AlrReward):
|
||||
def __init__(self, sim_time):
|
||||
self.sim_time = sim_time
|
||||
|
||||
self.collision_objects = ["cup_geom1", "cup_geom2", "wrist_palm_link_convex_geom",
|
||||
self.collision_objects = ["cup_geom1", "cup_geom2", "cup_base_contact_below",
|
||||
"wrist_palm_link_convex_geom",
|
||||
"wrist_pitch_link_convex_decomposition_p1_geom",
|
||||
"wrist_pitch_link_convex_decomposition_p2_geom",
|
||||
"wrist_pitch_link_convex_decomposition_p3_geom",
|
||||
@ -20,6 +21,8 @@ class BallInACupReward(alr_reward_fct.AlrReward):
|
||||
self.goal_id = None
|
||||
self.goal_final_id = None
|
||||
self.collision_ids = None
|
||||
self._is_collided = False
|
||||
self.collision_penalty = 1
|
||||
|
||||
self.ball_traj = None
|
||||
self.dists = None
|
||||
@ -36,49 +39,52 @@ class BallInACupReward(alr_reward_fct.AlrReward):
|
||||
self.action_costs = []
|
||||
self.cup_angles = []
|
||||
|
||||
def compute_reward(self, action, sim, step, context=None):
|
||||
self.ball_id = sim.model._body_name2id["ball"]
|
||||
self.ball_collision_id = sim.model._geom_name2id["ball_geom"]
|
||||
self.goal_id = sim.model._site_name2id["cup_goal"]
|
||||
self.goal_final_id = sim.model._site_name2id["cup_goal_final"]
|
||||
self.collision_ids = [sim.model._geom_name2id[name] for name in self.collision_objects]
|
||||
def compute_reward(self, action, env):
|
||||
self.ball_id = env.sim.model._body_name2id["ball"]
|
||||
self.ball_collision_id = env.sim.model._geom_name2id["ball_geom"]
|
||||
self.goal_id = env.sim.model._site_name2id["cup_goal"]
|
||||
self.goal_final_id = env.sim.model._site_name2id["cup_goal_final"]
|
||||
self.collision_ids = [env.sim.model._geom_name2id[name] for name in self.collision_objects]
|
||||
|
||||
ball_in_cup = self.check_ball_in_cup(sim, self.ball_collision_id)
|
||||
ball_in_cup = self.check_ball_in_cup(env.sim, self.ball_collision_id)
|
||||
|
||||
# Compute the current distance from the ball to the inner part of the cup
|
||||
goal_pos = sim.data.site_xpos[self.goal_id]
|
||||
ball_pos = sim.data.body_xpos[self.ball_id]
|
||||
goal_final_pos = sim.data.site_xpos[self.goal_final_id]
|
||||
goal_pos = env.sim.data.site_xpos[self.goal_id]
|
||||
ball_pos = env.sim.data.body_xpos[self.ball_id]
|
||||
goal_final_pos = env.sim.data.site_xpos[self.goal_final_id]
|
||||
self.dists.append(np.linalg.norm(goal_pos - ball_pos))
|
||||
self.dists_final.append(np.linalg.norm(goal_final_pos - ball_pos))
|
||||
self.ball_traj[step, :] = ball_pos
|
||||
cup_quat = np.copy(sim.data.body_xquat[sim.model._body_name2id["cup"]])
|
||||
self.ball_traj[env._steps, :] = ball_pos
|
||||
cup_quat = np.copy(env.sim.data.body_xquat[env.sim.model._body_name2id["cup"]])
|
||||
self.cup_angles.append(np.arctan2(2 * (cup_quat[0] * cup_quat[1] + cup_quat[2] * cup_quat[3]),
|
||||
1 - 2 * (cup_quat[1]**2 + cup_quat[2]**2)))
|
||||
|
||||
action_cost = np.sum(np.square(action))
|
||||
self.action_costs.append(action_cost)
|
||||
|
||||
if self.check_collision(sim):
|
||||
reward = - 1000
|
||||
return reward, False, True
|
||||
self._is_collided = self.check_collision(env.sim) or env.check_traj_in_joint_limits()
|
||||
|
||||
if step == self.sim_time - 1:
|
||||
if env._steps == env.sim_steps - 1 or self._is_collided:
|
||||
t_min_dist = np.argmin(self.dists)
|
||||
angle_min_dist = self.cup_angles[t_min_dist]
|
||||
cost_angle = (angle_min_dist - np.pi / 2)**2
|
||||
|
||||
min_dist = self.dists[t_min_dist]
|
||||
dist_final = self.dists_final[-1]
|
||||
min_dist_final = np.min(self.dists_final)
|
||||
|
||||
cost = 0.5 * min_dist + 0.5 * dist_final + 0.01 * cost_angle
|
||||
reward = np.exp(-2 * cost) - 1e-3 * action_cost
|
||||
success = dist_final < 0.05 and ball_in_cup
|
||||
cost = 0.5 * dist_final + 0.05 * cost_angle # TODO: Increase cost_angle weight # 0.5 * min_dist +
|
||||
# reward = np.exp(-2 * cost) - 1e-2 * action_cost - self.collision_penalty * int(self._is_collided)
|
||||
# reward = - dist_final**2 - 1e-4 * cost_angle - 1e-5 * action_cost - self.collision_penalty * int(self._is_collided)
|
||||
reward = - dist_final**2 - min_dist_final**2 - 1e-4 * cost_angle - 1e-5 * action_cost - self.collision_penalty * int(self._is_collided)
|
||||
success = dist_final < 0.05 and ball_in_cup and not self._is_collided
|
||||
crash = self._is_collided
|
||||
else:
|
||||
reward = - 1e-3 * action_cost
|
||||
reward = - 1e-5 * action_cost # TODO: increase action_cost weight
|
||||
success = False
|
||||
crash = False
|
||||
|
||||
return reward, success, False
|
||||
return reward, success, crash
|
||||
|
||||
def check_ball_in_cup(self, sim, ball_collision_id):
|
||||
cup_base_collision_id = sim.model._geom_name2id["cup_base_contact"]
|
||||
|
@ -105,6 +105,7 @@ class ALRBeerpongEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
def check_traj_in_joint_limits(self):
|
||||
return any(self.current_pos > self.j_max) or any(self.current_pos < self.j_min)
|
||||
|
||||
# TODO
|
||||
def _get_obs(self):
|
||||
theta = self.sim.data.qpos.flat[:7]
|
||||
return np.concatenate([
|
||||
@ -114,6 +115,10 @@ class ALRBeerpongEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
[self._steps],
|
||||
])
|
||||
|
||||
# TODO
|
||||
def active_obs(self):
|
||||
pass
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -40,6 +40,16 @@ def _flatten_list(l):
|
||||
return [l__ for l_ in l for l__ in l_]
|
||||
|
||||
|
||||
class DummyDist:
|
||||
def __init__(self, dim):
|
||||
self.dim = dim
|
||||
|
||||
def sample(self, contexts):
|
||||
contexts = np.atleast_2d(contexts)
|
||||
n_samples = contexts.shape[0]
|
||||
return np.random.normal(size=(n_samples, self.dim)), contexts
|
||||
|
||||
|
||||
class AlrMpEnvSampler:
|
||||
"""
|
||||
An asynchronous sampler for non contextual MPWrapper environments. A sampler object can be called with a set of
|
||||
@ -100,9 +110,9 @@ class AlrContextualMpEnvSampler:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
env_name = "alr_envs:ALRBallInACupSimpleDMP-v0"
|
||||
env_name = "alr_envs:HoleReacherDetPMP-v1"
|
||||
n_cpu = 8
|
||||
dim = 15
|
||||
dim = 25
|
||||
n_samples = 10
|
||||
|
||||
sampler = AlrMpEnvSampler(env_name, num_envs=n_cpu)
|
||||
|
@ -2,28 +2,29 @@ import gym
|
||||
import numpy as np
|
||||
from mp_lib import det_promp
|
||||
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
||||
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||
|
||||
|
||||
class DetPMPWrapper(MPWrapper):
|
||||
def __init__(self, env: MPEnv, num_dof: int, num_basis: int, width: int, duration: int = 1, dt: float = 0.01,
|
||||
def __init__(self, env: AlrEnv, num_dof: int, num_basis: int, width: float, duration: float = 1, dt: float = 0.01,
|
||||
post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
|
||||
zero_start: bool = False, zero_goal: bool = False, **mp_kwargs):
|
||||
self.duration = duration # seconds
|
||||
|
||||
dt = env.dt if hasattr(env, "dt") else dt
|
||||
assert dt is not None
|
||||
self.dt = dt
|
||||
|
||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, num_basis=num_basis,
|
||||
width=width, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
|
||||
|
||||
self.dt = dt
|
||||
|
||||
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
|
||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||
|
||||
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, width: float = None,
|
||||
zero_start: bool = False, zero_goal: bool = False):
|
||||
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=0.01,
|
||||
off: float = 0.01, zero_start: bool = False, zero_goal: bool = False):
|
||||
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=off,
|
||||
zero_start=zero_start, zero_goal=zero_goal)
|
||||
|
||||
weights = np.zeros(shape=(num_basis, num_dof))
|
||||
@ -32,10 +33,10 @@ class DetPMPWrapper(MPWrapper):
|
||||
return pmp
|
||||
|
||||
def mp_rollout(self, action):
|
||||
params = np.reshape(action, (self.mp.n_basis, self.mp.n_dof)) * self.weights_scale
|
||||
params = np.reshape(action, newshape=(self.mp.n_basis, self.mp.n_dof)) * self.weights_scale
|
||||
self.mp.set_weights(self.duration, params)
|
||||
_, des_pos, des_vel, _ = self.mp.compute_trajectory(1 / self.dt, 1.)
|
||||
if self.mp.zero_start:
|
||||
des_pos += self.start_pos[None, :]
|
||||
des_pos += self.env.start_pos[None, :]
|
||||
|
||||
return des_pos, des_vel
|
||||
|
@ -4,13 +4,13 @@ from mp_lib import dmps
|
||||
from mp_lib.basis import DMPBasisGenerator
|
||||
from mp_lib.phase import ExpDecayPhaseGenerator
|
||||
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
||||
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||
|
||||
|
||||
class DmpWrapper(MPWrapper):
|
||||
|
||||
def __init__(self, env: MPEnv, num_dof: int, num_basis: int,
|
||||
def __init__(self, env: AlrEnv, num_dof: int, num_basis: int,
|
||||
duration: int = 1, alpha_phase: float = 2., dt: float = None,
|
||||
learn_goal: bool = False, post_traj_time: float = 0.,
|
||||
weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3.,
|
||||
@ -40,7 +40,7 @@ class DmpWrapper(MPWrapper):
|
||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, render_mode,
|
||||
num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor)
|
||||
|
||||
action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0)))
|
||||
action_bounds = np.inf * np.ones((np.prod(self.mp.weights.shape) + (num_dof if learn_goal else 0)))
|
||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, alpha_phase: float = 2.,
|
||||
@ -51,7 +51,7 @@ class DmpWrapper(MPWrapper):
|
||||
basis_bandwidth_factor=bandwidth_factor)
|
||||
|
||||
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
|
||||
num_time_steps=int(duration / dt), dt=dt)
|
||||
duration=duration, dt=dt)
|
||||
|
||||
return dmp
|
||||
|
||||
@ -66,7 +66,7 @@ class DmpWrapper(MPWrapper):
|
||||
goal_pos = self.env.goal_pos
|
||||
assert goal_pos is not None
|
||||
|
||||
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape) # [num_basis, num_dof]
|
||||
weight_matrix = np.reshape(params, self.mp.weights.shape) # [num_basis, num_dof]
|
||||
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
|
||||
|
||||
def mp_rollout(self, action):
|
||||
|
@ -5,7 +5,7 @@ import gym
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MPEnv(gym.Env):
|
||||
class AlrEnv(gym.Env):
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
|
@ -3,13 +3,13 @@ from abc import ABC, abstractmethod
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_environments import AlrEnv
|
||||
from alr_envs.utils.policies import get_policy_class
|
||||
|
||||
|
||||
class MPWrapper(gym.Wrapper, ABC):
|
||||
|
||||
def __init__(self, env: MPEnv, num_dof: int, dt: float, duration: int = 1, post_traj_time: float = 0.,
|
||||
def __init__(self, env: AlrEnv, num_dof: int, dt: float, duration: float = 1, post_traj_time: float = 0.,
|
||||
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
|
||||
super().__init__(env)
|
||||
|
||||
@ -53,9 +53,6 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
|
||||
return obs, np.array(rewards), dones, infos
|
||||
|
||||
def configure(self, context):
|
||||
self.env.configure(context)
|
||||
|
||||
def reset(self):
|
||||
return self.env.reset()[self.env.active_obs]
|
||||
|
||||
@ -65,7 +62,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
|
||||
if self.post_traj_steps > 0:
|
||||
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
|
||||
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.num_dimensions))])
|
||||
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.n_dof))])
|
||||
|
||||
# self._trajectory = trajectory
|
||||
# self._velocity = velocity
|
||||
@ -105,7 +102,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, **kwargs):
|
||||
def initialize_mp(self, num_dof: int, duration: float, dt: float, **kwargs):
|
||||
"""
|
||||
Create respective instance of MP
|
||||
Returns:
|
||||
|
40
example.py
40
example.py
@ -1,6 +1,7 @@
|
||||
from collections import defaultdict
|
||||
import gym
|
||||
import numpy as np
|
||||
from alr_envs.utils.mp_env_async_sampler import AlrMpEnvSampler, AlrContextualMpEnvSampler, DummyDist
|
||||
|
||||
|
||||
def example_mujoco():
|
||||
@ -22,9 +23,9 @@ def example_mujoco():
|
||||
obs = env.reset()
|
||||
|
||||
|
||||
def example_dmp():
|
||||
def example_mp(env_name="alr_envs:HoleReacherDMP-v0"):
|
||||
# env = gym.make("alr_envs:ViaPointReacherDMP-v0")
|
||||
env = gym.make("alr_envs:HoleReacherDMP-v0")
|
||||
env = gym.make(env_name)
|
||||
rewards = 0
|
||||
# env.render(mode=None)
|
||||
obs = env.reset()
|
||||
@ -79,9 +80,36 @@ def example_async(env_id="alr_envs:HoleReacherDMP-v0", n_cpu=4, seed=int('533D',
|
||||
print(sample(envs, 16))
|
||||
|
||||
|
||||
def example_async_sampler(env_name="alr_envs:HoleReacherDetPMP-v1", n_cpu=4):
|
||||
n_samples = 10
|
||||
|
||||
sampler = AlrMpEnvSampler(env_name, num_envs=n_cpu)
|
||||
dim = sampler.env.action_space.spaces[0].shape[0]
|
||||
|
||||
thetas = np.random.randn(n_samples, dim) # usually form a search distribution
|
||||
|
||||
_, rewards, __, ___ = sampler(thetas)
|
||||
|
||||
print(rewards)
|
||||
|
||||
|
||||
def example_async_contextual_sampler(env_name="alr_envs:SimpleReacherDMP-v1", n_cpu=4):
|
||||
sampler = AlrContextualMpEnvSampler(env_name, num_envs=n_cpu)
|
||||
dim = sampler.env.action_space.spaces[0].shape[0]
|
||||
dist = DummyDist(dim) # needs a sample function
|
||||
|
||||
n_samples = 10
|
||||
new_samples, new_contexts, obs, new_rewards, done, infos = sampler(dist, n_samples)
|
||||
|
||||
print(new_rewards)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# example_mujoco()
|
||||
# example_dmp()
|
||||
example_async("alr_envs:LongSimpleReacherDMP-v0", 4)
|
||||
# env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1)
|
||||
# env = gym.make("alr_envs:HoleReacherDMP-v1")
|
||||
# example_dmp("alr_envs:SimpleReacherDMP-v1")
|
||||
# example_async("alr_envs:LongSimpleReacherDMP-v0", 4)
|
||||
# example_async_contextual_sampler()
|
||||
# env = gym.make("alr_envs:HoleReacherDetPMP-v1")
|
||||
env_name = "alr_envs:ALRBallInACupSimpleDetPMP-v0"
|
||||
# example_async_sampler(env_name)
|
||||
example_mp(env_name)
|
||||
|
Loading…
Reference in New Issue
Block a user