From 77d0cbd00ad9b319bd8d287ce16bd21ef37abd54 Mon Sep 17 00:00:00 2001 From: Maximilian Huettenrauch Date: Mon, 15 Feb 2021 09:03:19 +0100 Subject: [PATCH] updates --- alr_envs/classic_control/utils.py | 70 +++++++++++++++----- alr_envs/classic_control/viapoint_reacher.py | 67 +++++++------------ dmp_env_wrapper_example.py | 51 +++----------- dmp_pd_control_example.py | 57 +++++----------- 4 files changed, 103 insertions(+), 142 deletions(-) diff --git a/alr_envs/classic_control/utils.py b/alr_envs/classic_control/utils.py index b534eb9..f276d4a 100644 --- a/alr_envs/classic_control/utils.py +++ b/alr_envs/classic_control/utils.py @@ -1,8 +1,9 @@ from alr_envs.classic_control.hole_reacher import HoleReacher -from alr_envs.utils.dmp_env_wrapper import DmpEnvWrapperVel +from alr_envs.classic_control.viapoint_reacher import ViaPointReacher +from alr_envs.utils.dmp_env_wrapper import DmpEnvWrapper -def make_env(rank, seed=0): +def make_viapointreacher_env(rank, seed=0): """ Utility function for multiprocessed env. @@ -14,21 +15,56 @@ def make_env(rank, seed=0): """ def _init(): - env = HoleReacher(num_links=5, - allow_self_collision=False, - allow_wall_collision=False, - hole_width=0.15, - hole_depth=1, - hole_x=1, - collision_penalty=100000) + _env = ViaPointReacher(num_links=5, + allow_self_collision=False, + collision_penalty=1000) - env = DmpEnvWrapperVel(env, - num_dof=5, - num_basis=5, - duration=2, - dt=env.dt, - learn_goal=True) - env.seed(seed + rank) - return env + _env = DmpEnvWrapper(_env, + num_dof=5, + num_basis=5, + duration=2, + alpha_phase=2, + dt=_env.dt, + start_pos=_env.start_pos, + learn_goal=False, + policy_type="velocity") + _env.seed(seed + rank) + return _env + + return _init + + +def make_holereacher_env(rank, seed=0): + """ + Utility function for multiprocessed env. + + :param env_id: (str) the environment ID + :param num_env: (int) the number of environments you wish to have in subprocesses + :param seed: (int) the initial seed for RNG + :param rank: (int) index of the subprocess + :returns a function that generates an environment + """ + + def _init(): + _env = HoleReacher(num_links=5, + allow_self_collision=False, + allow_wall_collision=False, + hole_width=0.15, + hole_depth=1, + hole_x=1, + collision_penalty=100000) + + _env = DmpEnvWrapper(_env, + num_dof=5, + num_basis=5, + duration=2, + dt=_env.dt, + learn_goal=True, + alpha_phase=2, + start_pos=_env.start_pos, + policy_type="velocity" + ) + _env.seed(seed + rank) + return _env return _init diff --git a/alr_envs/classic_control/viapoint_reacher.py b/alr_envs/classic_control/viapoint_reacher.py index eeba84d..1cad10e 100644 --- a/alr_envs/classic_control/viapoint_reacher.py +++ b/alr_envs/classic_control/viapoint_reacher.py @@ -13,29 +13,24 @@ def intersect(A, B, C, D): return ccw(A, C, D) != ccw(B, C, D) and ccw(A, B, C) != ccw(A, B, D) -class HoleReacher(gym.Env): +class ViaPointReacher(gym.Env): - def __init__(self, num_links, hole_x, hole_width, hole_depth, allow_self_collision=False, - allow_wall_collision=False, collision_penalty=1000): - self.hole_x = hole_x # x-position of center of hole - self.hole_width = hole_width # width of hole - self.hole_depth = hole_depth # depth of hole + def __init__(self, num_links, allow_self_collision=False, + collision_penalty=1000): self.num_links = num_links self.link_lengths = np.ones((num_links, 1)) - self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth]) - self.top_center_of_hole = np.hstack([hole_x, 0]) - self.left_wall_edge = np.hstack([hole_x - self.hole_width/2, 0]) - self.right_wall_edge = np.hstack([hole_x + self.hole_width / 2, 0]) self.allow_self_collision = allow_self_collision - self.allow_wall_collision = allow_wall_collision self.collision_penalty = collision_penalty + self.via_point = np.ones(2) + self.goal_point = np.array((num_links, 0)) + self._joints = None self._joint_angles = None self._angle_velocity = None self.start_pos = np.hstack([[np.pi/2], np.zeros(self.num_links - 1)]) self.start_vel = np.zeros(self.num_links) - self.weight_matrix_scale = 50 # for the holereacher, the dmp weights become quite large compared to the values of the goal attractor. this scaling is to ensure they are on similar scale for the optimizer + self.weight_matrix_scale = 1 self.dt = 0.01 self.time_limit = 2 @@ -52,22 +47,14 @@ class HoleReacher(gym.Env): self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape) self.fig = None - rect_1 = patches.Rectangle((-self.num_links, -1), - self.num_links + self.hole_x - self.hole_width / 2, 1, - fill=True, edgecolor='k', facecolor='k') - rect_2 = patches.Rectangle((self.hole_x + self.hole_width / 2, -1), - self.num_links - self.hole_x + self.hole_width / 2, 1, - fill=True, edgecolor='k', facecolor='k') - rect_3 = patches.Rectangle((self.hole_x - self.hole_width / 2, -1), self.hole_width, - 1 - self.hole_depth, - fill=True, edgecolor='k', facecolor='k') - - self.patches = [rect_1, rect_2, rect_3] @property def end_effector(self): return self._joints[self.num_links].T + def configure(self, context): + pass + def reset(self): self._joint_angles = self.start_pos self._angle_velocity = self.start_vel @@ -94,16 +81,16 @@ class HoleReacher(gym.Env): dist_reward = 0 if not self._is_collided: - if self._steps == 180: - dist_reward = np.linalg.norm(self.end_effector - self.bottom_center_of_hole) - else: - dist_reward = np.linalg.norm(self.end_effector - self.bottom_center_of_hole) + if self._steps == 100: + dist_reward = np.linalg.norm(self.end_effector - self.via_point) + if self._steps == 200: + dist_reward = np.linalg.norm(self.end_effector - self.goal_point) reward = - dist_reward ** 2 reward -= 1e-6 * np.sum(acc**2) - if self._steps == 180: + if self._steps == 200: reward -= 0.1 * np.sum(vel**2) ** 2 if self._is_collided: @@ -129,17 +116,13 @@ class HoleReacher(gym.Env): self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1] self_collision = False - wall_collision = False if not self.allow_self_collision: self_collision = self.check_self_collision(line_points_in_taskspace) if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision: self_collision = True - if not self.allow_wall_collision: - wall_collision = self.check_wall_collision(line_points_in_taskspace) - - self._is_collided = self_collision or wall_collision + self._is_collided = self_collision def _get_obs(self): theta = self._joint_angles @@ -147,7 +130,8 @@ class HoleReacher(gym.Env): np.cos(theta), np.sin(theta), self._angle_velocity, - self.end_effector - self.bottom_center_of_hole, + self.end_effector - self.via_point, + self.end_effector - self.goal_point, self._steps ]) @@ -237,17 +221,14 @@ class HoleReacher(gym.Env): if mode == "human": plt.cla() - plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}") + plt.title(f"Iteration: {self._steps}") # Arm plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k') - # Add the patch to the Axes - [plt.gca().add_patch(rect) for rect in self.patches] - lim = np.sum(self.link_lengths) + 0.5 plt.xlim([-lim, lim]) - plt.ylim([-1.1, lim]) + plt.ylim([-lim, lim]) # plt.draw() plt.pause(1e-4) # pushes window to foreground, which is annoying. # self.fig.canvas.flush_events() @@ -293,14 +274,14 @@ class HoleReacher(gym.Env): if __name__ == '__main__': nl = 5 render_mode = "human" # "human" or "partial" or "final" - env = HoleReacher(num_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=0.15, hole_depth=1, hole_x=1) + env = ViaPointReacher(num_links=nl, allow_self_collision=False) env.reset() - # env.render(mode=render_mode) + env.render(mode=render_mode) - for i in range(200): + for i in range(300): # objective.load_result("/tmp/cma") # test with random actions - ac = 2 * env.action_space.sample() + ac = env.action_space.sample() # ac[0] += np.pi/2 obs, rew, d, info = env.step(ac) env.render(mode=render_mode) diff --git a/dmp_env_wrapper_example.py b/dmp_env_wrapper_example.py index 6ed73e7..e63e11c 100644 --- a/dmp_env_wrapper_example.py +++ b/dmp_env_wrapper_example.py @@ -1,52 +1,19 @@ -from alr_envs.utils.dmp_env_wrapper import DmpEnvWrapper -from alr_envs.utils.dmp_async_vec_env import DmpAsyncVectorEnv, _worker -from alr_envs.classic_control.hole_reacher import HoleReacher +from alr_envs.classic_control.utils import make_viapointreacher_env +from alr_envs.utils.dmp_async_vec_env import DmpAsyncVectorEnv import numpy as np if __name__ == "__main__": - def make_env(rank, seed=0): - """ - Utility function for multiprocessed env. + n_samples = 10 + n_cpus = 4 + dim = 25 - :param env_id: (str) the environment ID - :param num_env: (int) the number of environments you wish to have in subprocesses - :param seed: (int) the inital seed for RNG - :param rank: (int) index of the subprocess - """ - def _init(): - _env = HoleReacher(num_links=5, - allow_self_collision=False, - allow_wall_collision=False, - hole_width=0.15, - hole_depth=1, - hole_x=1) + env = DmpAsyncVectorEnv([make_viapointreacher_env(i) for i in range(n_cpus)], + n_samples=n_samples) - _env = DmpEnvWrapper(_env, - num_dof=5, - num_basis=5, - duration=2, - dt=_env.dt, - learn_goal=True, - alpha_phase=2, - start_pos=_env.start_pos, - policy_type="velocity" - ) - _env.seed(seed + rank) - return _env - return _init - - n_samples = 4 - - env = DmpAsyncVectorEnv([make_env(i) for i in range(4)], - n_samples=n_samples, - context="spawn", - shared_memory=False, - worker=_worker) - - # params = np.random.randn(4, 25) - params = np.hstack([50 * np.random.randn(n_samples, 25), np.tile(np.array([np.pi/2, -np.pi/4, -np.pi/4, -np.pi/4, -np.pi/4]), [n_samples, 1])]) + params = np.random.randn(n_samples, dim) + # params = np.hstack([50 * np.random.randn(n_samples, 25), np.tile(np.array([np.pi/2, -np.pi/4, -np.pi/4, -np.pi/4, -np.pi/4]), [n_samples, 1])]) # env.reset() out = env(params) diff --git a/dmp_pd_control_example.py b/dmp_pd_control_example.py index 023080a..33abe6e 100644 --- a/dmp_pd_control_example.py +++ b/dmp_pd_control_example.py @@ -1,55 +1,32 @@ -from alr_envs.utils.dmp_env_wrapper import DmpEnvWrapper -from alr_envs.utils.dmp_async_vec_env import DmpAsyncVectorEnv, _worker -from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_simple import ALRBallInACupEnv +from alr_envs.mujoco.ball_in_a_cup.utils import make_simple_env +from alr_envs.utils.dmp_async_vec_env import DmpAsyncVectorEnv import numpy as np if __name__ == "__main__": - def make_env(rank, seed=0): - """ - Utility function for multiprocessed env. - - :param env_id: (str) the environment ID - :param num_env: (int) the number of environments you wish to have in subprocesses - :param seed: (int) the inital seed for RNG - :param rank: (int) index of the subprocess - """ - def _init(): - _env = ALRBallInACupEnv() - - _env = DmpEnvWrapper(_env, - num_dof=3, - num_basis=8, - duration=3.5, - alpha_phase=3, - dt=_env.dt, - learn_goal=False, - start_pos=_env.start_pos[1::2], - final_pos=_env.start_pos[1::2], - policy_type="motor" - ) - _env.seed(seed + rank) - return _env - return _init - dim = 24 + n_cpus = 4 n_samples = 10 - vec_env = DmpAsyncVectorEnv([make_env(i) for i in range(4)], - n_samples=n_samples, - context="spawn", - shared_memory=False, - worker=_worker) + vec_env = DmpAsyncVectorEnv([make_simple_env(i) for i in range(n_cpus)], + n_samples=n_samples) - params = 10 * np.random.randn(n_samples, dim) + # params = 10 * np.random.randn(n_samples, dim) + params = np.array([[ -4.51280364, 24.43701373, 15.73282129, -12.13020392, + -8.57305795, 2.79806606, -6.38613201, 5.99309385, + -2.05631886, 24.71684748, 14.05989949, -14.60456967, + 10.51933419, -2.43715355, -6.0767578 , 13.06498129, + 6.18038374, 11.4153859 , 1.40753639, 5.57082387, + 9.81989309, 3.60558787, -9.66996754, 14.28519904]]) out = vec_env(params) - - non_vec_env = make_env(0, 0)() - - params = 10 * np.random.randn(dim) + print(out) + # + non_vec_env = make_simple_env(0, 0)() + # + # params = 10 * np.random.randn(dim) out2 = non_vec_env.rollout(params, render=True)