examples updated
This commit is contained in:
parent
993df10fad
commit
79c26681c9
@ -36,11 +36,11 @@ def example_mp(env_name="HoleReacherProMP-v0", seed=1, iterations=1, render=True
|
||||
env.render(mode=None)
|
||||
|
||||
# Now the action space is not the raw action but the parametrization of the trajectory generator,
|
||||
# such as a ProMP
|
||||
# such as a ProMP. You can still use it the same, though.
|
||||
ac = env.action_space.sample()
|
||||
# This executes a full trajectory
|
||||
obs, reward, done, info = env.step(ac)
|
||||
# Aggregated reward
|
||||
# Aggregated reward of trajectory
|
||||
rewards += reward
|
||||
|
||||
if done:
|
||||
@ -62,9 +62,8 @@ def example_custom_mp(env_name="Reacher5dProMP-v0", seed=1, iterations=1, render
|
||||
|
||||
"""
|
||||
# Changing the arguments of the black box env is possible by providing them to gym as with all kwargs.
|
||||
# E.g. here for way to many basis functions
|
||||
# env = alr_envs.make(env_name, seed, basis_generator_kwargs={'num_basis': 1000})
|
||||
env = alr_envs.make(env_name, seed)
|
||||
# E.g. here for adding a lot of basis functions
|
||||
env = alr_envs.make(env_name, seed, basis_generator_kwargs={'num_basis': 1000})
|
||||
# mp_dict.update({'black_box_kwargs': {'learn_sub_trajectories': True}})
|
||||
# mp_dict.update({'black_box_kwargs': {'do_replanning': lambda pos, vel, t: lambda t: t % 100}})
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user