after deadline

This commit is contained in:
Onur 2022-06-21 17:15:01 +02:00
parent c47845c0dd
commit 7bd9848c31
8 changed files with 227 additions and 45 deletions

View File

@ -203,6 +203,34 @@ register(
}
)
_vs = np.arange(101).tolist() + [1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1, 5e-1]
for i in _vs:
_env_id = f'ALRReacher{i}-v0'
register(
id=_env_id,
entry_point='alr_envs.alr.mujoco:ALRReacherEnv',
max_episode_steps=200,
kwargs={
"steps_before_reward": 0,
"n_links": 5,
"balance": False,
'ctrl_cost_weight': i
}
)
_env_id = f'ALRReacherSparse{i}-v0'
register(
id=_env_id,
entry_point='alr_envs.alr.mujoco:ALRReacherEnv',
max_episode_steps=200,
kwargs={
"steps_before_reward": 200,
"n_links": 5,
"balance": False,
'ctrl_cost_weight': i
}
)
# CtxtFree are v0, Contextual are v1
register(
id='ALRAntJump-v0',
@ -458,6 +486,18 @@ register(
}
)
# Beerpong with episodic reward, but fixed release time step
register(
id='ALRBeerPong-v4',
entry_point='alr_envs.alr.mujoco:ALRBeerBongEnvFixedReleaseStep',
max_episode_steps=300,
kwargs={
"rndm_goal": True,
"cup_goal_pos": [-0.3, -1.2],
"frame_skip": 2
}
)
# Motion Primitive Environments
## Simple Reacher
@ -648,6 +688,56 @@ for _v in _versions:
)
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id)
_vs = np.arange(101).tolist() + [1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1, 5e-1]
for i in _vs:
_env_id = f'ALRReacher{i}ProMP-v0'
register(
id=_env_id,
entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper',
kwargs={
"name": f"alr_envs:{_env_id.replace('ProMP', '')}",
"wrappers": [mujoco.reacher.MPWrapper],
"mp_kwargs": {
"num_dof": 5,
"num_basis": 5,
"duration": 4,
"policy_type": "motor",
# "weights_scale": 5,
"n_zero_basis": 1,
"zero_start": True,
"policy_kwargs": {
"p_gains": 1,
"d_gains": 0.1
}
}
}
)
_env_id = f'ALRReacherSparse{i}ProMP-v0'
register(
id=_env_id,
entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper',
kwargs={
"name": f"alr_envs:{_env_id.replace('ProMP', '')}",
"wrappers": [mujoco.reacher.MPWrapper],
"mp_kwargs": {
"num_dof": 5,
"num_basis": 5,
"duration": 4,
"policy_type": "motor",
# "weights_scale": 5,
"n_zero_basis": 1,
"zero_start": True,
"policy_kwargs": {
"p_gains": 1,
"d_gains": 0.1
}
}
}
)
# ## Beerpong
# _versions = ["v0", "v1"]
# for _v in _versions:
@ -717,6 +807,42 @@ for _v in _versions:
)
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id)
## Beerpong ProMP fixed release
_env_id = 'BeerpongProMP-v2'
register(
id=_env_id,
entry_point='alr_envs.utils.make_env_helpers:make_mp_env_helper',
kwargs={
"name": "alr_envs:ALRBeerPong-v4",
"wrappers": [mujoco.beerpong.NewMPWrapper],
"ep_wrapper_kwargs": {
"weight_scale": 1
},
"movement_primitives_kwargs": {
'movement_primitives_type': 'promp',
'action_dim': 7
},
"phase_generator_kwargs": {
'phase_generator_type': 'linear',
'delay': 0,
'tau': 0.62, # initial value
'learn_tau': False,
'learn_delay': False
},
"controller_kwargs": {
'controller_type': 'motor',
"p_gains": np.array([1.5, 5, 2.55, 3, 2., 2, 1.25]),
"d_gains": np.array([0.02333333, 0.1, 0.0625, 0.08, 0.03, 0.03, 0.0125]),
},
"basis_generator_kwargs": {
'basis_generator_type': 'zero_rbf',
'num_basis': 2,
'num_basis_zero_start': 2
}
}
)
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id)
## Table Tennis
ctxt_dim = [2, 4]
for _v, cd in enumerate(ctxt_dim):

View File

@ -2,7 +2,7 @@ from .reacher.balancing import BalancingEnv
from .ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
from .ball_in_a_cup.biac_pd import ALRBallInACupPDEnv
from .table_tennis.tt_gym import TTEnvGym
from .beerpong.beerpong import ALRBeerBongEnv, ALRBeerBongEnvStepBased, ALRBeerBongEnvStepBasedEpisodicReward
from .beerpong.beerpong import ALRBeerBongEnv, ALRBeerBongEnvStepBased, ALRBeerBongEnvStepBasedEpisodicReward, ALRBeerBongEnvFixedReleaseStep
from .ant_jump.ant_jump import ALRAntJumpEnv
from .half_cheetah_jump.half_cheetah_jump import ALRHalfCheetahJumpEnv
from .hopper_jump.hopper_jump import ALRHopperJumpEnv, ALRHopperJumpRndmPosEnv, ALRHopperXYJumpEnv, ALRHopperXYJumpEnvStepBased

View File

@ -185,6 +185,10 @@ class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
def dt(self):
return super(ALRBeerBongEnv, self).dt*self.repeat_action
class ALRBeerBongEnvFixedReleaseStep(ALRBeerBongEnv):
def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos)
self.release_step = 62 # empirically evaluated for frame_skip=2!
class ALRBeerBongEnvStepBasedEpisodicReward(ALRBeerBongEnv):
def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
@ -206,6 +210,25 @@ class ALRBeerBongEnvStepBasedEpisodicReward(ALRBeerBongEnv):
# internal steps and thus, the observation also needs to be set correctly
return ob, reward, done, infos
# class ALRBeerBongEnvStepBasedEpisodicReward(ALRBeerBongEnv):
# def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
# super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos)
# self.release_step = 62 # empirically evaluated for frame_skip=2!
#
# def step(self, a):
# if self._steps < self.release_step:
# return super(ALRBeerBongEnvStepBasedEpisodicReward, self).step(a)
# else:
# sub_ob, sub_reward, done, sub_infos = super(ALRBeerBongEnvStepBasedEpisodicReward, self).step(np.zeros(a.shape))
# reward = sub_reward
# infos = sub_infos
# ob = sub_ob
# ob[-1] = self.release_step + 1 # Since we simulate until the end of the episode, PPO does not see the
# # internal steps and thus, the observation also needs to be set correctly
# return ob, reward, done, infos
class ALRBeerBongEnvStepBased(ALRBeerBongEnv):
def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos)
@ -259,7 +282,8 @@ class ALRBeerBongEnvStepBased(ALRBeerBongEnv):
if __name__ == "__main__":
# env = ALRBeerBongEnv(rndm_goal=True)
# env = ALRBeerBongEnvStepBased(frame_skip=2, rndm_goal=True)
env = ALRBeerBongEnvStepBasedEpisodicReward(frame_skip=2, rndm_goal=True)
# env = ALRBeerBongEnvStepBasedEpisodicReward(frame_skip=2, rndm_goal=True)
env = ALRBeerBongEnvFixedReleaseStep(frame_skip=2, rndm_goal=True)
import time
env.reset()
env.render("human")

View File

@ -123,7 +123,6 @@ class ALRHopperJumpEnv(HopperEnv):
class ALRHopperXYJumpEnv(ALRHopperJumpEnv):
def step(self, action):
self._floor_geom_id = self.model.geom_name2id('floor')
self._foot_geom_id = self.model.geom_name2id('foot_geom')
@ -173,7 +172,8 @@ class ALRHopperXYJumpEnv(ALRHopperJumpEnv):
'goal_dist': goal_dist,
'height_rew': self.max_height,
'healthy_reward': self.healthy_reward * 2,
'healthy': self.is_healthy
'healthy': self.is_healthy,
'contact_dist': self.contact_dist if self.contact_dist is not None else 0
}
return observation, reward, done, info
@ -194,7 +194,6 @@ class ALRHopperXYJumpEnv(ALRHopperJumpEnv):
rnd_vec = self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
qpos = self.init_qpos + rnd_vec
qvel = self.init_qvel
self.set_state(qpos, qvel)
observation = self._get_obs()
@ -207,9 +206,6 @@ class ALRHopperXYJumpEnv(ALRHopperJumpEnv):
def reset(self):
super().reset()
# self.goal = np.random.uniform(-1.5, 1.5, 1)
# self.goal = np.random.uniform(0, 1.5, 1)
# self.goal = self.np_random.uniform(0, 1.5, 1)
self.goal = self.np_random.uniform(0.3, 1.35, 1)[0]
self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = np.array([self.goal, 0, 0])
return self.reset_model()
@ -219,6 +215,16 @@ class ALRHopperXYJumpEnv(ALRHopperJumpEnv):
- np.array([self.goal, 0, 0])
return np.concatenate((super(ALRHopperXYJumpEnv, self)._get_obs(), goal_diff))
def set_context(self, context):
# context is 4 dimensional
qpos = self.init_qpos
qvel = self.init_qvel
qpos[-3:] = context[:3]
self.goal = context[-1]
self.set_state(qpos, qvel)
self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = np.array([self.goal, 0, 0])
return self._get_obs()
class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv):
def __init__(self,
@ -246,10 +252,6 @@ class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv):
reset_noise_scale, exclude_current_positions_from_observation, max_episode_steps)
def step(self, action):
print("")
print('height_scale: ', self.height_scale)
print('healthy_scale: ', self.healthy_scale)
print('dist_scale: ', self.dist_scale)
self._floor_geom_id = self.model.geom_name2id('floor')
self._foot_geom_id = self.model.geom_name2id('foot_geom')
@ -268,6 +270,23 @@ class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv):
reward = -ctrl_cost + healthy_reward + dist_reward
done = False
observation = self._get_obs()
###########################################################
# This is only for logging the distance to goal when first having the contact
##########################################################
floor_contact = self._contact_checker(self._floor_geom_id,
self._foot_geom_id) if not self.contact_with_floor else False
if not self.init_floor_contact:
self.init_floor_contact = floor_contact
if self.init_floor_contact and not self.has_left_floor:
self.has_left_floor = not floor_contact
if not self.contact_with_floor and self.has_left_floor:
self.contact_with_floor = floor_contact
if self.contact_dist is None and self.contact_with_floor:
self.contact_dist = np.linalg.norm(self.sim.data.site_xpos[self.model.site_name2id('foot_site')]
- np.array([self.goal, 0, 0]))
info = {
'height': height_after,
'x_pos': site_pos_after,
@ -275,8 +294,9 @@ class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv):
'goal': self.goal,
'goal_dist': goal_dist,
'height_rew': self.max_height,
'healthy_reward': self.healthy_reward * 2,
'healthy': self.is_healthy
'healthy_reward': self.healthy_reward * self.healthy_reward,
'healthy': self.is_healthy,
'contact_dist': self.contact_dist if self.contact_dist is not None else 0
}
return observation, reward, done, info
@ -361,7 +381,7 @@ if __name__ == '__main__':
# env = ALRHopperJumpRndmPosEnv()
obs = env.reset()
for k in range(10):
for k in range(1000):
obs = env.reset()
print('observation :', obs[:])
for i in range(200):

View File

@ -39,3 +39,7 @@ class NewHighCtxtMPWrapper(NewMPWrapper):
[True], # goal
[False] * 3 # goal diff
])
def set_context(self, context):
return self.get_observation_from_step(self.env.env.set_context(context))

View File

@ -8,7 +8,8 @@ import alr_envs.utils.utils as alr_utils
class ALRReacherEnv(MujocoEnv, utils.EzPickle):
def __init__(self, steps_before_reward=200, n_links=5, balance=False):
def __init__(self, steps_before_reward: int = 200, n_links: int = 5, ctrl_cost_weight: int = 1,
balance: bool = False):
utils.EzPickle.__init__(**locals())
self._steps = 0
@ -17,6 +18,7 @@ class ALRReacherEnv(MujocoEnv, utils.EzPickle):
self.balance = balance
self.balance_weight = 1.0
self.ctrl_cost_weight = ctrl_cost_weight
self.reward_weight = 1
if steps_before_reward == 200:
@ -40,7 +42,7 @@ class ALRReacherEnv(MujocoEnv, utils.EzPickle):
angular_vel = 0.0
reward_balance = 0.0
is_delayed = self.steps_before_reward > 0
reward_ctrl = - np.square(a).sum()
reward_ctrl = - np.square(a).sum() * self.ctrl_cost_weight
if self._steps >= self.steps_before_reward:
vec = self.get_body_com("fingertip") - self.get_body_com("target")
reward_dist -= self.reward_weight * np.linalg.norm(vec)
@ -48,9 +50,9 @@ class ALRReacherEnv(MujocoEnv, utils.EzPickle):
# avoid giving this penalty for normal step based case
# angular_vel -= 10 * np.linalg.norm(self.sim.data.qvel.flat[:self.n_links])
angular_vel -= 10 * np.square(self.sim.data.qvel.flat[:self.n_links]).sum()
if is_delayed:
# Higher control penalty for sparse reward per timestep
reward_ctrl *= 10
# if is_delayed:
# # Higher control penalty for sparse reward per timestep
# reward_ctrl *= 10
if self.balance:
reward_balance -= self.balance_weight * np.abs(
@ -68,35 +70,42 @@ class ALRReacherEnv(MujocoEnv, utils.EzPickle):
def viewer_setup(self):
self.viewer.cam.trackbodyid = 0
def reset_model(self):
qpos = self.init_qpos
if not hasattr(self, "goal"):
self.goal = np.array([-0.25, 0.25])
# self.goal = self.init_qpos.copy()[:2] + 0.05
qpos[-2:] = self.goal
qvel = self.init_qvel
qvel[-2:] = 0
self.set_state(qpos, qvel)
self._steps = 0
return self._get_obs()
# def reset_model(self):
# qpos = self.init_qpos.copy()
# while True:
# self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
# # self.goal = self.np_random.uniform(low=0, high=self.n_links / 10, size=2)
# # self.goal = np.random.uniform(low=[-self.n_links / 10, 0], high=[0, self.n_links / 10], size=2)
# if np.linalg.norm(self.goal) < self.n_links / 10:
# break
# qpos = self.init_qpos
# if not hasattr(self, "goal"):
# self.goal = np.array([-0.25, 0.25])
# # self.goal = self.init_qpos.copy()[:2] + 0.05
# qpos[-2:] = self.goal
# qvel = self.init_qvel.copy()
# qvel = self.init_qvel
# qvel[-2:] = 0
# self.set_state(qpos, qvel)
# self._steps = 0
#
# return self._get_obs()
def reset_model(self):
qpos = self.init_qpos.copy()
while True:
# full space
# self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
# I Quadrant
# self.goal = self.np_random.uniform(low=0, high=self.n_links / 10, size=2)
# II Quadrant
# self.goal = np.random.uniform(low=[-self.n_links / 10, 0], high=[0, self.n_links / 10], size=2)
# II + III Quadrant
# self.goal = np.random.uniform(low=-self.n_links / 10, high=[0, self.n_links / 10], size=2)
# I + II Quadrant
self.goal = np.random.uniform(low=[-self.n_links / 10, 0], high=self.n_links, size=2)
if np.linalg.norm(self.goal) < self.n_links / 10:
break
qpos[-2:] = self.goal
qvel = self.init_qvel.copy()
qvel[-2:] = 0
self.set_state(qpos, qvel)
self._steps = 0
return self._get_obs()
# def reset_model(self):
# qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
# while True:

View File

@ -98,7 +98,6 @@ def make(env_id: str, seed, **kwargs):
return env
def _make_wrapped_env(env_id: str, wrappers: Iterable[Type[gym.Wrapper]], mp: MPInterface, controller: BaseController,
ep_wrapper_kwargs: Mapping, seed=1, **kwargs):
"""