Fixed all examples
This commit is contained in:
parent
8749fc52cb
commit
7f58093c5e
@ -1,17 +1,18 @@
|
||||
import gymnasium as gym
|
||||
import fancy_gym
|
||||
|
||||
|
||||
def example_run_replanning_env(env_name="BoxPushingDenseReplanProDMP-v0", seed=1, iterations=1, render=False):
|
||||
env = fancy_gym.make(env_name, seed=seed)
|
||||
env.reset()
|
||||
def example_run_replanning_env(env_name="fancy_ProDMP/BoxPushingDenseReplan-v0", seed=1, iterations=1, render=False):
|
||||
env = gym.make(env_name)
|
||||
env.reset(seed=seed)
|
||||
for i in range(iterations):
|
||||
done = False
|
||||
while done is False:
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
obs, reward, terminated, truncated, info = env.step(ac)
|
||||
if render:
|
||||
env.render(mode="human")
|
||||
if done:
|
||||
if terminated or truncated:
|
||||
env.reset()
|
||||
env.close()
|
||||
del env
|
||||
@ -48,8 +49,8 @@ def example_custom_replanning_envs(seed=0, iteration=100, render=True):
|
||||
|
||||
for i in range(iteration):
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
if done:
|
||||
obs, reward, terminated, truncated, info = env.step(ac)
|
||||
if terminated or truncated:
|
||||
env.reset()
|
||||
|
||||
env.close()
|
||||
@ -58,7 +59,7 @@ def example_custom_replanning_envs(seed=0, iteration=100, render=True):
|
||||
|
||||
if __name__ == "__main__":
|
||||
# run a registered replanning environment
|
||||
example_run_replanning_env(env_name="BoxPushingDenseReplanProDMP-v0", seed=1, iterations=1, render=False)
|
||||
example_run_replanning_env(env_name="fancy_ProDMP/BoxPushingDenseReplan-v0", seed=1, iterations=1, render=False)
|
||||
|
||||
# run a custom replanning environment
|
||||
example_custom_replanning_envs(seed=0, iteration=8, render=True)
|
||||
|
@ -1,7 +1,8 @@
|
||||
import gymnasium as gym
|
||||
import fancy_gym
|
||||
|
||||
|
||||
def example_dmc(env_id="dmc:fish-swim", seed=1, iterations=1000, render=True):
|
||||
def example_dmc(env_id="dm_control/fish-swim", seed=1, iterations=1000, render=True):
|
||||
"""
|
||||
Example for running a DMC based env in the step based setting.
|
||||
The env_id has to be specified as `domain_name:task_name` or
|
||||
@ -16,9 +17,9 @@ def example_dmc(env_id="dmc:fish-swim", seed=1, iterations=1000, render=True):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
env = fancy_gym.make(env_id, seed)
|
||||
env = gym.make(env_id)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
obs = env.reset(seed=seed)
|
||||
print("observation shape:", env.observation_space.shape)
|
||||
print("action shape:", env.action_space.shape)
|
||||
|
||||
@ -56,7 +57,7 @@ def example_custom_dmc_and_mp(seed=1, iterations=1, render=True):
|
||||
"""
|
||||
|
||||
# Base DMC name, according to structure of above example
|
||||
base_env_id = "dmc:ball_in_cup-catch"
|
||||
base_env_id = "dm_control/ball_in_cup-catch"
|
||||
|
||||
# Replace this wrapper with the custom wrapper for your environment by inheriting from the RawInterfaceWrapper.
|
||||
# You can also add other gym.Wrappers in case they are needed.
|
||||
@ -66,7 +67,7 @@ def example_custom_dmc_and_mp(seed=1, iterations=1, render=True):
|
||||
phase_generator_kwargs = {'phase_generator_type': 'linear'}
|
||||
controller_kwargs = {'controller_type': 'motor',
|
||||
"p_gains": 1.0,
|
||||
"d_gains": 0.1,}
|
||||
"d_gains": 0.1, }
|
||||
basis_generator_kwargs = {'basis_generator_type': 'zero_rbf',
|
||||
'num_basis': 5,
|
||||
'num_basis_zero_start': 1
|
||||
@ -123,14 +124,14 @@ if __name__ == '__main__':
|
||||
render = True
|
||||
|
||||
# # Standard DMC Suite tasks
|
||||
example_dmc("dmc:fish-swim", seed=10, iterations=1000, render=render)
|
||||
example_dmc("dm_control/fish-swim", seed=10, iterations=1000, render=render)
|
||||
#
|
||||
# # Manipulation tasks
|
||||
# # Disclaimer: The vision versions are currently not integrated and yield an error
|
||||
example_dmc("dmc:manipulation-reach_site_features", seed=10, iterations=250, render=render)
|
||||
example_dmc("dm_control/manipulation-reach_site_features", seed=10, iterations=250, render=render)
|
||||
#
|
||||
# # Gym + DMC hybrid task provided in the MP framework
|
||||
example_dmc("dmc_ball_in_cup-catch_promp-v0", seed=10, iterations=1, render=render)
|
||||
example_dmc("dm_control_ProMP/ball_in_cup-catch-v0", seed=10, iterations=1, render=render)
|
||||
|
||||
# Custom DMC task # Different seed, because the episode is longer for this example and the name+seed combo is
|
||||
# already registered above
|
||||
|
@ -21,9 +21,9 @@ def example_general(env_id="Pendulum-v1", seed=1, iterations=1000, render=True):
|
||||
|
||||
"""
|
||||
|
||||
env = fancy_gym.make(env_id, seed)
|
||||
env = gym.make(env_id)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
obs = env.reset(seed=seed)
|
||||
print("Observation shape: ", env.observation_space.shape)
|
||||
print("Action shape: ", env.action_space.shape)
|
||||
|
||||
@ -41,7 +41,7 @@ def example_general(env_id="Pendulum-v1", seed=1, iterations=1000, render=True):
|
||||
obs = env.reset()
|
||||
|
||||
|
||||
def example_async(env_id="HoleReacher-v0", n_cpu=4, seed=int('533D', 16), n_samples=800):
|
||||
def example_async(env_id="fancy/HoleReacher-v0", n_cpu=4, seed=int('533D', 16), n_samples=800):
|
||||
"""
|
||||
Example for running any env in a vectorized multiprocessing setting to generate more samples faster.
|
||||
This also includes DMC and DMP environments when leveraging our custom make_env function.
|
||||
@ -93,11 +93,10 @@ if __name__ == '__main__':
|
||||
example_general("Pendulum-v1", seed=10, iterations=200, render=render)
|
||||
|
||||
# Mujoco task from framework
|
||||
example_general("Reacher5d-v0", seed=10, iterations=200, render=render)
|
||||
example_general("fancy/Reacher5d-v0", seed=10, iterations=200, render=render)
|
||||
|
||||
# # OpenAI Mujoco task
|
||||
example_general("HalfCheetah-v2", seed=10, render=render)
|
||||
|
||||
# Vectorized multiprocessing environments
|
||||
# example_async(env_id="HoleReacher-v0", n_cpu=2, seed=int('533D', 16), n_samples=2 * 200)
|
||||
|
||||
|
@ -1,7 +1,8 @@
|
||||
import gymnasium as gym
|
||||
import fancy_gym
|
||||
|
||||
|
||||
def example_dmc(env_id="fish-swim", seed=1, iterations=1000, render=True):
|
||||
def example_meta(env_id="fish-swim", seed=1, iterations=1000, render=True):
|
||||
"""
|
||||
Example for running a MetaWorld based env in the step based setting.
|
||||
The env_id has to be specified as `task_name-v2`. V1 versions are not supported and we always
|
||||
@ -17,9 +18,9 @@ def example_dmc(env_id="fish-swim", seed=1, iterations=1000, render=True):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
env = fancy_gym.make(env_id, seed)
|
||||
env = gym.make(env_id)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
obs = env.reset(seed=seed)
|
||||
print("observation shape:", env.observation_space.shape)
|
||||
print("action shape:", env.action_space.shape)
|
||||
|
||||
@ -40,7 +41,7 @@ def example_dmc(env_id="fish-swim", seed=1, iterations=1000, render=True):
|
||||
del env
|
||||
|
||||
|
||||
def example_custom_dmc_and_mp(seed=1, iterations=1, render=True):
|
||||
def example_custom_meta_and_mp(seed=1, iterations=1, render=True):
|
||||
"""
|
||||
Example for running a custom movement primitive based environments.
|
||||
Our already registered environments follow the same structure.
|
||||
@ -58,7 +59,7 @@ def example_custom_dmc_and_mp(seed=1, iterations=1, render=True):
|
||||
"""
|
||||
|
||||
# Base MetaWorld name, according to structure of above example
|
||||
base_env_id = "metaworld:button-press-v2"
|
||||
base_env_id = "metaworld/button-press-v2"
|
||||
|
||||
# Replace this wrapper with the custom wrapper for your environment by inheriting from the RawInterfaceWrapper.
|
||||
# You can also add other gym.Wrappers in case they are needed.
|
||||
@ -124,10 +125,10 @@ if __name__ == '__main__':
|
||||
render = False
|
||||
|
||||
# # Standard Meta world tasks
|
||||
example_dmc("metaworld:button-press-v2", seed=10, iterations=500, render=render)
|
||||
example_meta("metaworld/button-press-v2", seed=10, iterations=500, render=render)
|
||||
|
||||
# # MP + MetaWorld hybrid task provided in the our framework
|
||||
example_dmc("ButtonPressProMP-v2", seed=10, iterations=1, render=render)
|
||||
example_meta("metaworld_ProMP/ButtonPress-v2", seed=10, iterations=1, render=render)
|
||||
#
|
||||
# # Custom MetaWorld task
|
||||
example_custom_dmc_and_mp(seed=10, iterations=1, render=render)
|
||||
example_custom_meta_and_mp(seed=10, iterations=1, render=render)
|
||||
|
@ -1,7 +1,8 @@
|
||||
import gymnasium as gym
|
||||
import fancy_gym
|
||||
|
||||
|
||||
def example_mp(env_name="HoleReacherProMP-v0", seed=1, iterations=1, render=True):
|
||||
def example_mp(env_name="fancy_ProMP/HoleReacher-v0", seed=1, iterations=1, render=True):
|
||||
"""
|
||||
Example for running a black box based environment, which is already registered
|
||||
Args:
|
||||
@ -15,11 +16,11 @@ def example_mp(env_name="HoleReacherProMP-v0", seed=1, iterations=1, render=True
|
||||
"""
|
||||
# Equivalent to gym, we have a make function which can be used to create environments.
|
||||
# It takes care of seeding and enables the use of a variety of external environments using the gym interface.
|
||||
env = fancy_gym.make(env_name, seed)
|
||||
env = gym.make(env_name)
|
||||
|
||||
returns = 0
|
||||
# env.render(mode=None)
|
||||
obs = env.reset()
|
||||
obs = env.reset(seed=seed)
|
||||
|
||||
# number of samples/full trajectories (multiple environment steps)
|
||||
for i in range(iterations):
|
||||
@ -50,7 +51,7 @@ def example_mp(env_name="HoleReacherProMP-v0", seed=1, iterations=1, render=True
|
||||
obs = env.reset()
|
||||
|
||||
|
||||
def example_custom_mp(env_name="Reacher5dProMP-v0", seed=1, iterations=1, render=True):
|
||||
def example_custom_mp(env_name="fancy_ProMP/Reacher5d-v0", seed=1, iterations=1, render=True):
|
||||
"""
|
||||
Example for running a movement primitive based environment, which is already registered
|
||||
Args:
|
||||
@ -62,12 +63,9 @@ def example_custom_mp(env_name="Reacher5dProMP-v0", seed=1, iterations=1, render
|
||||
Returns:
|
||||
|
||||
"""
|
||||
# Changing the arguments of the black box env is possible by providing them to gym as with all kwargs.
|
||||
# Changing the arguments of the black box env is possible by providing them to gym through mp_config_override.
|
||||
# E.g. here for way to many basis functions
|
||||
env = fancy_gym.make(env_name, seed, basis_generator_kwargs={'num_basis': 1000})
|
||||
# env = fancy_gym.make(env_name, seed)
|
||||
# mp_dict.update({'black_box_kwargs': {'learn_sub_trajectories': True}})
|
||||
# mp_dict.update({'black_box_kwargs': {'do_replanning': lambda pos, vel, t: lambda t: t % 100}})
|
||||
env = gym.make(env_name, seed, mp_config_override={'basis_generator_kwargs': {'num_basis': 1000}})
|
||||
|
||||
returns = 0
|
||||
obs = env.reset()
|
||||
@ -106,7 +104,7 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
|
||||
|
||||
"""
|
||||
|
||||
base_env_id = "Reacher5d-v0"
|
||||
base_env_id = "fancy/Reacher5d-v0"
|
||||
|
||||
# Replace this wrapper with the custom wrapper for your environment by inheriting from the RawInterfaceWrapper.
|
||||
# You can also add other gym.Wrappers in case they are needed.
|
||||
@ -157,20 +155,20 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
|
||||
if __name__ == '__main__':
|
||||
render = False
|
||||
# DMP
|
||||
example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)
|
||||
example_mp("fancy_DMP/HoleReacher-v0", seed=10, iterations=5, render=render)
|
||||
|
||||
# ProMP
|
||||
example_mp("HoleReacherProMP-v0", seed=10, iterations=5, render=render)
|
||||
example_mp("BoxPushingTemporalSparseProMP-v0", seed=10, iterations=1, render=render)
|
||||
example_mp("TableTennis4DProMP-v0", seed=10, iterations=20, render=render)
|
||||
example_mp("fancy_ProMP/HoleReacher-v0", seed=10, iterations=5, render=render)
|
||||
example_mp("fancy_ProMP/BoxPushingTemporalSparse-v0", seed=10, iterations=1, render=render)
|
||||
example_mp("fancy_ProMP/TableTennis4D-v0", seed=10, iterations=20, render=render)
|
||||
|
||||
# ProDMP with Replanning
|
||||
example_mp("BoxPushingDenseReplanProDMP-v0", seed=10, iterations=4, render=render)
|
||||
example_mp("TableTennis4DReplanProDMP-v0", seed=10, iterations=20, render=render)
|
||||
example_mp("TableTennisWindReplanProDMP-v0", seed=10, iterations=20, render=render)
|
||||
example_mp("fancy_ProDMP/BoxPushingDenseReplan-v0", seed=10, iterations=4, render=render)
|
||||
example_mp("fancy_ProDMP/TableTennis4DReplan-v0", seed=10, iterations=20, render=render)
|
||||
example_mp("fancy_ProDMP/TableTennisWindReplan-v0", seed=10, iterations=20, render=render)
|
||||
|
||||
# Altered basis functions
|
||||
obs1 = example_custom_mp("Reacher5dProMP-v0", seed=10, iterations=1, render=render)
|
||||
obs1 = example_custom_mp("fancy_ProMP/Reacher5d-v0", seed=10, iterations=1, render=render)
|
||||
|
||||
# Custom MP
|
||||
example_fully_custom_mp(seed=10, iterations=1, render=render)
|
||||
|
@ -1,3 +1,4 @@
|
||||
import gymnasium as gym
|
||||
import fancy_gym
|
||||
|
||||
|
||||
@ -12,11 +13,10 @@ def example_mp(env_name, seed=1, render=True):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
# While in this case gym.make() is possible to use as well, we recommend our custom make env function.
|
||||
env = fancy_gym.make(env_name, seed)
|
||||
env = gym.make(env_name)
|
||||
|
||||
returns = 0
|
||||
obs = env.reset()
|
||||
obs = env.reset(seed=seed)
|
||||
# number of samples/full trajectories (multiple environment steps)
|
||||
for i in range(10):
|
||||
if render and i % 2 == 0:
|
||||
@ -33,5 +33,4 @@ def example_mp(env_name, seed=1, render=True):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
example_mp("ReacherProMP-v2")
|
||||
|
||||
example_mp("gym_ProMP/Reacher-v2")
|
||||
|
@ -1,10 +1,14 @@
|
||||
import gymnasium as gym
|
||||
import fancy_gym
|
||||
|
||||
|
||||
def compare_bases_shape(env1_id, env2_id):
|
||||
env1 = fancy_gym.make(env1_id, seed=0)
|
||||
env1 = gym.make(env1_id)
|
||||
env1.traj_gen.show_scaled_basis(plot=True)
|
||||
env2 = fancy_gym.make(env2_id, seed=0)
|
||||
env2 = gym.make(env2_id)
|
||||
env2.traj_gen.show_scaled_basis(plot=True)
|
||||
return
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
compare_bases_shape("TableTennis4DProDMP-v0", "TableTennis4DProMP-v0")
|
||||
compare_bases_shape("fancy_ProDMP/TableTennis4D-v0", "fancy_ProMP/TableTennis4D-v0")
|
||||
|
@ -3,19 +3,20 @@ from collections import OrderedDict
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import gymnasium as gym
|
||||
import fancy_gym
|
||||
|
||||
# This might work for some environments, however, please verify either way the correct trajectory information
|
||||
# for your environment are extracted below
|
||||
SEED = 1
|
||||
|
||||
env_id = "Reacher5dProMP-v0"
|
||||
env_id = "fancy_ProMP/Reacher5d-v0"
|
||||
|
||||
env = fancy_gym.make(env_id, seed=SEED, controller_kwargs={'p_gains': 0.05, 'd_gains': 0.05}).env
|
||||
env = fancy_gym.make(env_id, mp_config_override={'controller_kwargs': {'p_gains': 0.05, 'd_gains': 0.05}}).env
|
||||
env.action_space.seed(SEED)
|
||||
|
||||
# Plot difference between real trajectory and target MP trajectory
|
||||
env.reset()
|
||||
env.reset(seed=SEED)
|
||||
w = env.action_space.sample()
|
||||
pos, vel = env.get_trajectory(w)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user