unified API wrapper and updated examples
This commit is contained in:
parent
6607d9cff9
commit
80933eba09
@ -4,9 +4,8 @@ from gym.envs.registration import register
|
||||
from alr_envs.classic_control.hole_reacher.hole_reacher_mp_wrapper import HoleReacherMPWrapper
|
||||
from alr_envs.classic_control.simple_reacher.simple_reacher_mp_wrapper import SimpleReacherMPWrapper
|
||||
from alr_envs.classic_control.viapoint_reacher.viapoint_reacher_mp_wrapper import ViaPointReacherMPWrapper
|
||||
from alr_envs.dmc.Ball_in_the_cup_mp_wrapper import DMCBallInCupMPWrapper
|
||||
from alr_envs.dmc.ball_in_cup.ball_in_the_cup_mp_wrapper import DMCBallInCupMPWrapper
|
||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_mp_wrapper import BallInACupMPWrapper
|
||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_positional_wrapper import BallInACupPositionalWrapper
|
||||
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
||||
|
||||
# Mujoco
|
||||
@ -204,7 +203,7 @@ register(
|
||||
"hole_width": None,
|
||||
"hole_depth": 1,
|
||||
"hole_x": None,
|
||||
"collision_penalty": 1000,
|
||||
"collision_penalty": 100,
|
||||
}
|
||||
)
|
||||
|
||||
@ -236,7 +235,7 @@ register(
|
||||
"hole_width": 0.25,
|
||||
"hole_depth": 1,
|
||||
"hole_x": 2,
|
||||
"collision_penalty": 1000,
|
||||
"collision_penalty": 100,
|
||||
}
|
||||
)
|
||||
|
||||
@ -354,7 +353,7 @@ register(
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
||||
kwargs={
|
||||
"name": "alr_envs:ALRBallInACupSimple-v0",
|
||||
"wrappers": [BallInACupMPWrapper, BallInACupPositionalWrapper],
|
||||
"wrappers": [BallInACupMPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 3,
|
||||
"num_basis": 5,
|
||||
@ -379,7 +378,7 @@ register(
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
||||
kwargs={
|
||||
"name": "alr_envs:ALRBallInACup-v0",
|
||||
"wrappers": [BallInACupMPWrapper, BallInACupPositionalWrapper],
|
||||
"wrappers": [BallInACupMPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 7,
|
||||
"num_basis": 5,
|
||||
@ -404,7 +403,7 @@ register(
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "alr_envs:ALRBallInACupSimple-v0",
|
||||
"wrappers": [BallInACupMPWrapper, BallInACupPositionalWrapper],
|
||||
"wrappers": [BallInACupMPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 3,
|
||||
"num_basis": 5,
|
||||
@ -429,7 +428,7 @@ register(
|
||||
entry_point='alr_envs.mujoco.ball_in_a_cup.biac_pd:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "alr_envs:ALRBallInACupPDSimple-v0",
|
||||
"wrappers": [BallInACupMPWrapper, BallInACupPositionalWrapper],
|
||||
"wrappers": [BallInACupMPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 3,
|
||||
"num_basis": 5,
|
||||
@ -474,7 +473,7 @@ register(
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "alr_envs:ALRBallInACupSimple-v0",
|
||||
"wrappers": [BallInACupMPWrapper, BallInACupPositionalWrapper],
|
||||
"wrappers": [BallInACupMPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 7,
|
||||
"num_basis": 5,
|
||||
@ -486,7 +485,6 @@ register(
|
||||
"zero_start": True,
|
||||
"zero_goal": True,
|
||||
"policy_kwargs": {
|
||||
|
||||
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
||||
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
||||
}
|
||||
@ -499,7 +497,7 @@ register(
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_contextual_env',
|
||||
kwargs={
|
||||
"name": "alr_envs:ALRBallInACupGoal-v0",
|
||||
"wrappers": [BallInACupMPWrapper, BallInACupPositionalWrapper],
|
||||
"wrappers": [BallInACupMPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 7,
|
||||
"num_basis": 5,
|
||||
@ -522,7 +520,7 @@ register(
|
||||
## DMC
|
||||
|
||||
register(
|
||||
id=f'dmc_ball_in_cup_dmp-v0',
|
||||
id=f'dmc_ball_in_cup-catch_dmp-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
@ -531,19 +529,23 @@ register(
|
||||
"mp_kwargs": {
|
||||
"num_dof": 2,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"duration": 20,
|
||||
"learn_goal": True,
|
||||
"alpha_phase": 2,
|
||||
"bandwidth_factor": 2,
|
||||
"policy_type": "velocity",
|
||||
"policy_type": "motor",
|
||||
"weights_scale": 50,
|
||||
"goal_scale": 0.1
|
||||
"goal_scale": 0.1,
|
||||
"policy_kwargs": {
|
||||
"p_gains": 0.2,
|
||||
"d_gains": 0.05
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id=f'dmc_ball_in_cup_detpmp-v0',
|
||||
id=f'dmc_ball_in_cup-catch_detpmp-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": f"ball_in_cup-catch",
|
||||
@ -551,16 +553,19 @@ register(
|
||||
"mp_kwargs": {
|
||||
"num_dof": 2,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"duration": 20,
|
||||
"width": 0.025,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 0.2,
|
||||
"zero_start": True
|
||||
"zero_start": True,
|
||||
"policy_kwargs": {
|
||||
"p_gains": 0.2,
|
||||
"d_gains": 0.05
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# BBO functions
|
||||
|
||||
for dim in [5, 10, 25, 50, 100]:
|
||||
|
@ -69,9 +69,17 @@ class HoleReacherEnv(gym.Env):
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
# @property
|
||||
# def start_pos(self):
|
||||
# return self._start_pos
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
return self._start_pos
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
|
@ -1,8 +1,8 @@
|
||||
from typing import Union
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class HoleReacherMPWrapper(MPEnvWrapper):
|
||||
@ -19,11 +19,15 @@ class HoleReacherMPWrapper(MPEnvWrapper):
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self.env.start_pos
|
||||
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.env.current_pos
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.env.current_vel
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
@property
|
||||
|
@ -59,9 +59,17 @@ class SimpleReacherEnv(gym.Env):
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
# @property
|
||||
# def start_pos(self):
|
||||
# return self._start_pos
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
return self._start_pos
|
||||
def current_pos(self):
|
||||
return self._joint_angles
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
|
@ -1,8 +1,8 @@
|
||||
from typing import Union
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class SimpleReacherMPWrapper(MPEnvWrapper):
|
||||
@ -17,11 +17,15 @@ class SimpleReacherMPWrapper(MPEnvWrapper):
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
return self.env.start_pos
|
||||
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.env.current_pos
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.env.current_vel
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
@property
|
||||
|
@ -63,9 +63,17 @@ class ViaPointReacher(gym.Env):
|
||||
def dt(self):
|
||||
return self._dt
|
||||
|
||||
# @property
|
||||
# def start_pos(self):
|
||||
# return self._start_pos
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
return self._start_pos
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
|
@ -1,8 +1,8 @@
|
||||
from typing import Union
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class ViaPointReacherMPWrapper(MPEnvWrapper):
|
||||
@ -18,11 +18,15 @@ class ViaPointReacherMPWrapper(MPEnvWrapper):
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self.env.start_pos
|
||||
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.env.current_pos
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.env.current_vel
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
@property
|
||||
|
@ -1,27 +0,0 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class DMCBallInCupMPWrapper(MPEnvWrapper):
|
||||
|
||||
@property
|
||||
def active_obs(self):
|
||||
# Besides the ball position, the environment is always set to 0.
|
||||
return np.hstack([
|
||||
[False] * 2, # cup position
|
||||
[True] * 2, # ball position
|
||||
[False] * 2, # cup velocity
|
||||
[False] * 2, # ball velocity
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return np.hstack([self.physics.named.data.qpos['cup_x'], self.physics.named.data.qpos['cup_z']])
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
# Taken from: https://github.com/deepmind/dm_control/blob/master/dm_control/suite/ball_in_cup.py#L27
|
||||
return 0.02
|
0
alr_envs/dmc/ball_in_cup/__init__.py
Normal file
0
alr_envs/dmc/ball_in_cup/__init__.py
Normal file
34
alr_envs/dmc/ball_in_cup/ball_in_the_cup_mp_wrapper.py
Normal file
34
alr_envs/dmc/ball_in_cup/ball_in_the_cup_mp_wrapper.py
Normal file
@ -0,0 +1,34 @@
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class DMCBallInCupMPWrapper(MPEnvWrapper):
|
||||
|
||||
@property
|
||||
def active_obs(self):
|
||||
# Besides the ball position, the environment is always set to 0.
|
||||
return np.hstack([
|
||||
[False] * 2, # cup position
|
||||
[True] * 2, # ball position
|
||||
[False] * 2, # cup velocity
|
||||
[False] * 2, # ball velocity
|
||||
])
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return np.hstack([self.physics.named.data.qpos['cup_x'], self.physics.named.data.qpos['cup_z']])
|
||||
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return np.hstack([self.physics.named.data.qvel['cup_x'], self.physics.named.data.qvel['cup_z']])
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self.env.dt
|
@ -1,9 +1,23 @@
|
||||
from alr_envs.dmc.Ball_in_the_cup_mp_wrapper import DMCBallInCupMPWrapper
|
||||
from alr_envs.dmc.ball_in_cup.ball_in_the_cup_mp_wrapper import DMCBallInCupMPWrapper
|
||||
from alr_envs.utils.make_env_helpers import make_dmp_env, make_env
|
||||
|
||||
|
||||
def example_dmc(env_name="fish-swim", seed=1, iterations=1000):
|
||||
env = make_env(env_name, seed)
|
||||
def example_dmc(env_id="fish-swim", seed=1, iterations=1000, render=True):
|
||||
"""
|
||||
Example for running a DMC based env in the step based setting.
|
||||
The env_id has to be specified as `domain_name-task_name` or
|
||||
for manipulation tasks as `manipulation-environment_name`
|
||||
|
||||
Args:
|
||||
env_id: Either `domain_name-task_name` or `manipulation-environment_name`
|
||||
seed: seed for deterministic behaviour
|
||||
iterations: Number of rollout steps to run
|
||||
render: Render the episode
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
env = make_env(env_id, seed)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
print("observation shape:", env.observation_space.shape)
|
||||
@ -15,39 +29,44 @@ def example_dmc(env_name="fish-swim", seed=1, iterations=1000):
|
||||
obs, reward, done, info = env.step(ac)
|
||||
rewards += reward
|
||||
|
||||
env.render("human")
|
||||
if render:
|
||||
env.render("human")
|
||||
|
||||
if done:
|
||||
print(env_name, rewards)
|
||||
print(env_id, rewards)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
|
||||
env.close()
|
||||
|
||||
|
||||
def example_custom_dmc_and_mp(seed=1):
|
||||
def example_custom_dmc_and_mp(seed=1, iterations=1, render=True):
|
||||
"""
|
||||
Example for running a custom motion primitive based environments based off of a dmc task.
|
||||
Our already registered environments follow the same structure, but do not directly allow for modifications.
|
||||
Hence, this also allows to adjust hyperparameters of the motion primitives more easily.
|
||||
Example for running a custom motion primitive based environments.
|
||||
Our already registered environments follow the same structure.
|
||||
Hence, this also allows to adjust hyperparameters of the motion primitives.
|
||||
Yet, we recommend the method above if you are just interested in chaining those parameters for existing tasks.
|
||||
We appreciate PRs for custom environments (especially MP wrappers of existing tasks)
|
||||
for our repo: https://github.com/ALRhub/alr_envs/
|
||||
Args:
|
||||
seed: seed
|
||||
seed: seed for deterministic behaviour
|
||||
iterations: Number of rollout steps to run
|
||||
render: Render the episode
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
# Base DMC name, according to structure of above example
|
||||
base_env = "ball_in_cup-catch"
|
||||
|
||||
# Replace this wrapper with the custom wrapper for your environment by inheriting from the MPEnvWrapper.
|
||||
# You can also add other gym.Wrappers in case they are needed.
|
||||
# wrappers = [HoleReacherMPWrapper]
|
||||
wrappers = [DMCBallInCupMPWrapper]
|
||||
mp_kwargs = {
|
||||
"num_dof": 2, # env.start_pos
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"duration": 20,
|
||||
"learn_goal": True,
|
||||
"alpha_phase": 2,
|
||||
"bandwidth_factor": 2,
|
||||
@ -57,14 +76,21 @@ def example_custom_dmc_and_mp(seed=1):
|
||||
}
|
||||
env = make_dmp_env(base_env, wrappers=wrappers, seed=seed, mp_kwargs=mp_kwargs)
|
||||
# OR for a deterministic ProMP:
|
||||
# env = make_detpmp_env(base_env, wrappers=wrappers, seed=seed, **mp_args)
|
||||
# env = make_detpmp_env(base_env, wrappers=wrappers, seed=seed, mp_kwargs=mp_args)
|
||||
|
||||
# This renders the full MP trajectory
|
||||
# It is only required to call render() once in the beginning, which renders every consecutive trajectory.
|
||||
# Resetting to no rendering, can be achieved by render(mode=None).
|
||||
# It is also possible to change them mode multiple times when
|
||||
# e.g. only every nth trajectory should be displayed.
|
||||
if render:
|
||||
env.render(mode="human")
|
||||
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
env.render("human")
|
||||
|
||||
# number of samples/full trajectories (multiple environment steps)
|
||||
for i in range(10):
|
||||
for i in range(iterations):
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
rewards += reward
|
||||
@ -85,14 +111,14 @@ if __name__ == '__main__':
|
||||
# export MUJOCO_GL="osmesa"
|
||||
|
||||
# Standard DMC Suite tasks
|
||||
example_dmc("fish-swim", seed=10, iterations=100)
|
||||
example_dmc("fish-swim", seed=10, iterations=1000, render=True)
|
||||
|
||||
# Manipulation tasks
|
||||
# The vision versions are currently not integrated
|
||||
example_dmc("manipulation-reach_site_features", seed=10, iterations=100)
|
||||
# Disclaimer: The vision versions are currently not integrated and yield an error
|
||||
example_dmc("manipulation-reach_site_features", seed=10, iterations=250, render=True)
|
||||
|
||||
# Gym + DMC hybrid task provided in the MP framework
|
||||
example_dmc("dmc_ball_in_cup_dmp-v0", seed=10, iterations=10)
|
||||
example_dmc("dmc_ball_in_cup-catch_detpmp-v0", seed=10, iterations=1, render=True)
|
||||
|
||||
# Custom DMC task
|
||||
example_custom_dmc_and_mp()
|
||||
example_custom_dmc_and_mp(seed=10, iterations=1, render=True)
|
||||
|
@ -4,14 +4,23 @@ from collections import defaultdict
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
from alr_envs.utils.make_env_helpers import make_env
|
||||
from alr_envs.utils.make_env_helpers import make_env, make_env_rank
|
||||
from alr_envs.utils.mp_env_async_sampler import AlrContextualMpEnvSampler, AlrMpEnvSampler, DummyDist
|
||||
|
||||
|
||||
def example_general(env_id: str, seed=1, iterations=1000):
|
||||
def example_general(env_id="Pendulum-v0", seed=1, iterations=1000, render=True):
|
||||
"""
|
||||
Example for running any env in the step based setting.
|
||||
This also includes DMC environments when leveraging our custom make_env function.
|
||||
|
||||
Args:
|
||||
env_id: OpenAI/Custom gym task id or either `domain_name-task_name` or `manipulation-environment_name` for DMC tasks
|
||||
seed: seed for deterministic behaviour
|
||||
iterations: Number of rollout steps to run
|
||||
render: Render the episode
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
env = make_env(env_id, seed)
|
||||
@ -25,7 +34,7 @@ def example_general(env_id: str, seed=1, iterations=1000):
|
||||
obs, reward, done, info = env.step(env.action_space.sample())
|
||||
rewards += reward
|
||||
|
||||
if i % 1 == 0:
|
||||
if render:
|
||||
env.render()
|
||||
|
||||
if done:
|
||||
@ -34,36 +43,60 @@ def example_general(env_id: str, seed=1, iterations=1000):
|
||||
obs = env.reset()
|
||||
|
||||
|
||||
def example_async(env_id="alr_envs:HoleReacherDMP-v0", n_cpu=4, seed=int('533D', 16)):
|
||||
def sample(env: gym.vector.VectorEnv, n_samples=100):
|
||||
# for plotting
|
||||
rewards = np.zeros(n_cpu)
|
||||
def example_async(env_id="alr_envs:HoleReacher-v0", n_cpu=4, seed=int('533D', 16), n_samples=800):
|
||||
"""
|
||||
Example for running any env in a vectorized multiprocessing setting to generate more samples faster.
|
||||
This also includes DMC and DMP environments when leveraging our custom make_env function.
|
||||
Be aware, increasing the number of environments reduces the total length of the individual episodes.
|
||||
|
||||
# this would generate more samples than requested if n_samples % num_envs != 0
|
||||
repeat = int(np.ceil(n_samples / env.num_envs))
|
||||
vals = defaultdict(list)
|
||||
for i in range(repeat):
|
||||
obs, reward, done, info = envs.step(envs.action_space.sample())
|
||||
vals['obs'].append(obs)
|
||||
vals['reward'].append(reward)
|
||||
vals['done'].append(done)
|
||||
vals['info'].append(info)
|
||||
rewards += reward
|
||||
if np.any(done):
|
||||
print(rewards[done])
|
||||
rewards[done] = 0
|
||||
Args:
|
||||
env_id: OpenAI/Custom gym task id or either `domain_name-task_name` or `manipulation-environment_name` for DMC tasks
|
||||
seed: seed for deterministic behaviour
|
||||
n_cpu: Number of cpus cores to use in parallel
|
||||
n_samples: number of samples generated in total by all environments.
|
||||
|
||||
# do not return values above threshold
|
||||
return (*map(lambda v: np.stack(v)[:n_samples], vals.values()),)
|
||||
Returns: Tuple of (obs, reward, done, info) with type np.ndarray
|
||||
|
||||
from alr_envs.utils.make_env_helpers import make_env_rank
|
||||
envs = gym.vector.AsyncVectorEnv([make_env_rank(env_id, seed, i) for i in range(n_cpu)])
|
||||
"""
|
||||
env = gym.vector.AsyncVectorEnv([make_env_rank(env_id, seed, i) for i in range(n_cpu)])
|
||||
# OR
|
||||
# envs = gym.vector.AsyncVectorEnv([make_env(env_id, seed + i) for i in range(n_cpu)])
|
||||
|
||||
obs = envs.reset()
|
||||
print(sample(envs, 16))
|
||||
# for plotting
|
||||
rewards = np.zeros(n_cpu)
|
||||
buffer = defaultdict(list)
|
||||
|
||||
obs = env.reset()
|
||||
|
||||
# this would generate more samples than requested if n_samples % num_envs != 0
|
||||
repeat = int(np.ceil(n_samples / env.num_envs))
|
||||
for i in range(repeat):
|
||||
obs, reward, done, info = env.step(env.action_space.sample())
|
||||
buffer['obs'].append(obs)
|
||||
buffer['reward'].append(reward)
|
||||
buffer['done'].append(done)
|
||||
buffer['info'].append(info)
|
||||
rewards += reward
|
||||
if np.any(done):
|
||||
print(f"Reward at iteration {i}: {rewards[done]}")
|
||||
rewards[done] = 0
|
||||
|
||||
# do not return values above threshold
|
||||
return *map(lambda v: np.stack(v)[:n_samples], buffer.values()),
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Mujoco task from framework
|
||||
example_general("alr_envs:ALRReacher-v0")
|
||||
# Basic gym task
|
||||
# example_general("Pendulum-v0", seed=10, iterations=200, render=True)
|
||||
#
|
||||
# # Basis task from framework
|
||||
# example_general("alr_envs:HoleReacher-v0", seed=10, iterations=200, render=True)
|
||||
#
|
||||
# # OpenAI Mujoco task
|
||||
# example_general("HalfCheetah-v2", seed=10, render=True)
|
||||
#
|
||||
# # Mujoco task from framework
|
||||
# example_general("alr_envs:ALRReacher-v0", seed=10, iterations=200, render=True)
|
||||
|
||||
# Vectorized multiprocessing environments
|
||||
example_async(env_id="alr_envs:HoleReacher-v0", n_cpu=2, seed=int('533D', 16), n_samples=2 * 200)
|
||||
|
@ -2,12 +2,14 @@ from alr_envs import HoleReacherMPWrapper
|
||||
from alr_envs.utils.make_env_helpers import make_dmp_env, make_env
|
||||
|
||||
|
||||
def example_mp(env_name="alr_envs:HoleReacherDMP-v1", seed=1):
|
||||
def example_mp(env_name="alr_envs:HoleReacherDMP-v1", seed=1, iterations=1, render=True):
|
||||
"""
|
||||
Example for running a motion primitive based environment, which is already registered
|
||||
Args:
|
||||
env_name: DMP env_id
|
||||
seed: seed
|
||||
seed: seed for deterministic behaviour
|
||||
iterations: Number of rollout steps to run
|
||||
render: Render the episode
|
||||
|
||||
Returns:
|
||||
|
||||
@ -16,44 +18,81 @@ def example_mp(env_name="alr_envs:HoleReacherDMP-v1", seed=1):
|
||||
# First, it already takes care of seeding and second enables the use of DMC tasks within the gym interface.
|
||||
env = make_env(env_name, seed)
|
||||
|
||||
# Changing the mp_kwargs is possible by providing them to gym.
|
||||
# E.g. here by providing way to many basis functions
|
||||
# mp_kwargs = {
|
||||
# "num_dof": 5,
|
||||
# "num_basis": 1000,
|
||||
# "duration": 2,
|
||||
# "learn_goal": True,
|
||||
# "alpha_phase": 2,
|
||||
# "bandwidth_factor": 2,
|
||||
# "policy_type": "velocity",
|
||||
# "weights_scale": 50,
|
||||
# "goal_scale": 0.1
|
||||
# }
|
||||
# env = make_env(env_name, seed, mp_kwargs=mp_kwargs)
|
||||
|
||||
rewards = 0
|
||||
# env.render(mode=None)
|
||||
obs = env.reset()
|
||||
|
||||
# number of samples/full trajectories (multiple environment steps)
|
||||
for i in range(10):
|
||||
for i in range(iterations):
|
||||
|
||||
if render and i % 2 == 0:
|
||||
# This renders the full MP trajectory
|
||||
# It is only required to call render() once in the beginning, which renders every consecutive trajectory.
|
||||
# Resetting to no rendering, can be achieved by render(mode=None).
|
||||
# It is also possible to change the mode multiple times when
|
||||
# e.g. only every second trajectory should be displayed, such as here
|
||||
# Just make sure the correct mode is set before executing the step.
|
||||
env.render(mode="human")
|
||||
else:
|
||||
env.render(mode=None)
|
||||
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
rewards += reward
|
||||
|
||||
if i % 1 == 0:
|
||||
# render full DMP trajectory
|
||||
# render can only be called once in the beginning as well. That would render every trajectory
|
||||
# Calling it after every trajectory allows to modify the mode. mode=None, disables rendering.
|
||||
env.render(mode="human")
|
||||
|
||||
if done:
|
||||
print(rewards)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
|
||||
|
||||
def example_custom_mp(seed=1):
|
||||
def example_custom_mp(env_name="alr_envs:HoleReacherDMP-v1", seed=1, iterations=1, render=True):
|
||||
"""
|
||||
Example for running a motion primitive based environment, which is already registered
|
||||
Args:
|
||||
env_name: DMP env_id
|
||||
seed: seed for deterministic behaviour
|
||||
iterations: Number of rollout steps to run
|
||||
render: Render the episode
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
# Changing the mp_kwargs is possible by providing them to gym.
|
||||
# E.g. here by providing way to many basis functions
|
||||
mp_kwargs = {
|
||||
"num_dof": 5,
|
||||
"num_basis": 1000,
|
||||
"duration": 2,
|
||||
"learn_goal": True,
|
||||
"alpha_phase": 2,
|
||||
"bandwidth_factor": 2,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
"goal_scale": 0.1
|
||||
}
|
||||
env = make_env(env_name, seed, mp_kwargs=mp_kwargs)
|
||||
|
||||
# This time rendering every trajectory
|
||||
if render:
|
||||
env.render(mode="human")
|
||||
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
|
||||
# number of samples/full trajectories (multiple environment steps)
|
||||
for i in range(iterations):
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
rewards += reward
|
||||
|
||||
if done:
|
||||
print(rewards)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
|
||||
|
||||
def example_fully_custom_mp(seed=1, iterations=1, render=True):
|
||||
"""
|
||||
Example for running a custom motion primitive based environments.
|
||||
Our already registered environments follow the same structure.
|
||||
@ -63,12 +102,15 @@ def example_custom_mp(seed=1):
|
||||
for our repo: https://github.com/ALRhub/alr_envs/
|
||||
Args:
|
||||
seed: seed
|
||||
iterations: Number of rollout steps to run
|
||||
render: Render the episode
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
base_env = "alr_envs:HoleReacher-v1"
|
||||
|
||||
# Replace this wrapper with the custom wrapper for your environment by inheriting from the MPEnvWrapper.
|
||||
# You can also add other gym.Wrappers in case they are needed.
|
||||
wrappers = [HoleReacherMPWrapper]
|
||||
@ -85,19 +127,16 @@ def example_custom_mp(seed=1):
|
||||
}
|
||||
env = make_dmp_env(base_env, wrappers=wrappers, seed=seed, mp_kwargs=mp_kwargs)
|
||||
# OR for a deterministic ProMP:
|
||||
# env = make_detpmp_env(base_env, wrappers=wrappers, seed=seed)
|
||||
# env = make_detpmp_env(base_env, wrappers=wrappers, seed=seed, mp_kwargs=mp_kwargs)
|
||||
|
||||
if render:
|
||||
env.render(mode="human")
|
||||
|
||||
rewards = 0
|
||||
# render full DMP trajectory
|
||||
# It is only required to call render() once in the beginning, which renders every consecutive trajectory.
|
||||
# Resetting to no rendering, can be achieved by render(mode=None).
|
||||
# It is also possible to change them mode multiple times when
|
||||
# e.g. only every nth trajectory should be displayed.
|
||||
env.render(mode="human")
|
||||
obs = env.reset()
|
||||
|
||||
# number of samples/full trajectories (multiple environment steps)
|
||||
for i in range(10):
|
||||
for i in range(iterations):
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
rewards += reward
|
||||
@ -110,10 +149,13 @@ def example_custom_mp(seed=1):
|
||||
|
||||
if __name__ == '__main__':
|
||||
# DMP
|
||||
example_mp("alr_envs:HoleReacherDMP-v1")
|
||||
example_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=True)
|
||||
|
||||
# DetProMP
|
||||
example_mp("alr_envs:HoleReacherDetPMP-v1")
|
||||
example_mp("alr_envs:HoleReacherDetPMP-v1", seed=10, iterations=1, render=True)
|
||||
|
||||
# Custom DMP
|
||||
example_custom_mp()
|
||||
# Altered basis functions
|
||||
example_custom_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=True)
|
||||
|
||||
# Custom MP
|
||||
example_fully_custom_mp(seed=10, iterations=1, render=True)
|
||||
|
@ -1,270 +0,0 @@
|
||||
from collections import OrderedDict
|
||||
import os
|
||||
from abc import abstractmethod
|
||||
|
||||
|
||||
from gym import error, spaces
|
||||
from gym.utils import seeding
|
||||
import numpy as np
|
||||
from os import path
|
||||
|
||||
from alr_envs.utils.mps.alr_env import AlrEnv
|
||||
from alr_envs.utils.positional_env import PositionalEnv
|
||||
|
||||
try:
|
||||
import mujoco_py
|
||||
except ImportError as e:
|
||||
raise error.DependencyNotInstalled("{}. (HINT: you need to install mujoco_py, and also perform the setup instructions here: https://github.com/openai/mujoco-py/.)".format(e))
|
||||
|
||||
DEFAULT_SIZE = 500
|
||||
|
||||
|
||||
def convert_observation_to_space(observation):
|
||||
if isinstance(observation, dict):
|
||||
space = spaces.Dict(OrderedDict([
|
||||
(key, convert_observation_to_space(value))
|
||||
for key, value in observation.items()
|
||||
]))
|
||||
elif isinstance(observation, np.ndarray):
|
||||
low = np.full(observation.shape, -float('inf'), dtype=np.float32)
|
||||
high = np.full(observation.shape, float('inf'), dtype=np.float32)
|
||||
space = spaces.Box(low, high, dtype=observation.dtype)
|
||||
else:
|
||||
raise NotImplementedError(type(observation), observation)
|
||||
|
||||
return space
|
||||
|
||||
|
||||
class AlrMujocoEnv(PositionalEnv, AlrEnv):
|
||||
"""
|
||||
Superclass for all MuJoCo environments.
|
||||
"""
|
||||
|
||||
def __init__(self, model_path, n_substeps, apply_gravity_comp=True):
|
||||
"""
|
||||
|
||||
Args:
|
||||
model_path: path to xml file
|
||||
n_substeps: how many steps mujoco does per call to env.step
|
||||
apply_gravity_comp: Whether gravity compensation should be active
|
||||
"""
|
||||
if model_path.startswith("/"):
|
||||
fullpath = model_path
|
||||
else:
|
||||
fullpath = os.path.join(os.path.dirname(__file__), "assets", model_path)
|
||||
if not path.exists(fullpath):
|
||||
raise IOError("File %s does not exist" % fullpath)
|
||||
self.n_substeps = n_substeps
|
||||
self.apply_gravity_comp = apply_gravity_comp
|
||||
self.model = mujoco_py.load_model_from_path(fullpath)
|
||||
self.sim = mujoco_py.MjSim(self.model, nsubsteps=n_substeps)
|
||||
self.data = self.sim.data
|
||||
self.viewer = None
|
||||
self._viewers = {}
|
||||
|
||||
self.metadata = {
|
||||
'render.modes': ['human', 'rgb_array', 'depth_array'],
|
||||
'video.frames_per_second': int(np.round(1.0 / self.dt))
|
||||
}
|
||||
|
||||
self.init_qpos = self.sim.data.qpos.ravel().copy()
|
||||
self.init_qvel = self.sim.data.qvel.ravel().copy()
|
||||
|
||||
self._start_pos = None
|
||||
self._start_vel = None
|
||||
|
||||
self._set_action_space()
|
||||
|
||||
observation = self._get_obs() # TODO: is calling get_obs enough? should we call reset, or even step?
|
||||
|
||||
self._set_observation_space(observation)
|
||||
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
"""
|
||||
By default returns the joint positions of all simulated objects. May be overridden in subclass.
|
||||
"""
|
||||
return self.sim.data.qpos
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
"""
|
||||
By default returns the joint velocities of all simulated objects. May be overridden in subclass.
|
||||
"""
|
||||
return self.sim.data.qvel
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
"""
|
||||
Start position of the agent, for example joint angles of a Panda robot. Necessary for MP wrapped simple_reacher.
|
||||
"""
|
||||
return self._start_pos
|
||||
|
||||
@property
|
||||
def start_vel(self):
|
||||
"""
|
||||
Start velocity of the agent. Necessary for MP wrapped simple_reacher.
|
||||
"""
|
||||
return self._start_vel
|
||||
|
||||
def extend_des_pos(self, des_pos):
|
||||
"""
|
||||
In a simplified environment, the actions may only control a subset of all the joints.
|
||||
Extend the trajectory to match the environments full action space
|
||||
Args:
|
||||
des_pos:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
def extend_des_vel(self, des_vel):
|
||||
pass
|
||||
|
||||
def _set_action_space(self):
|
||||
bounds = self.model.actuator_ctrlrange.copy().astype(np.float32)
|
||||
low, high = bounds.T
|
||||
self.action_space = spaces.Box(low=low, high=high, dtype=np.float32)
|
||||
return self.action_space
|
||||
|
||||
def _set_observation_space(self, observation):
|
||||
self.observation_space = convert_observation_to_space(observation)
|
||||
return self.observation_space
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
# methods to override:
|
||||
# ----------------------------
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def active_obs(self):
|
||||
"""Returns boolean mask for each observation entry
|
||||
whether the observation is returned for the contextual case or not.
|
||||
This effectively allows to filter unwanted or unnecessary observations from the full step-based case.
|
||||
"""
|
||||
return np.ones(self.observation_space.shape, dtype=bool)
|
||||
|
||||
def _get_obs(self):
|
||||
"""Returns the observation.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def reset_model(self):
|
||||
"""
|
||||
Reset the robot degrees of freedom (qpos and qvel).
|
||||
Implement this in each subclass.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def viewer_setup(self):
|
||||
"""
|
||||
This method is called when the viewer is initialized.
|
||||
Optionally implement this method, if you need to tinker with camera position
|
||||
and so forth.
|
||||
"""
|
||||
pass
|
||||
|
||||
# -----------------------------
|
||||
|
||||
def reset(self):
|
||||
self.sim.reset()
|
||||
ob = self.reset_model()
|
||||
return ob
|
||||
|
||||
def set_state(self, qpos, qvel):
|
||||
assert qpos.shape == (self.model.nq,) and qvel.shape == (self.model.nv,)
|
||||
old_state = self.sim.get_state()
|
||||
new_state = mujoco_py.MjSimState(old_state.time, qpos, qvel,
|
||||
old_state.act, old_state.udd_state)
|
||||
self.sim.set_state(new_state)
|
||||
self.sim.forward()
|
||||
|
||||
@property
|
||||
def dt(self):
|
||||
return self.model.opt.timestep * self.n_substeps
|
||||
|
||||
def do_simulation(self, ctrl):
|
||||
"""
|
||||
Additionally returns whether there was an error while stepping the simulation
|
||||
"""
|
||||
error_in_sim = False
|
||||
num_actuations = len(ctrl)
|
||||
if self.apply_gravity_comp:
|
||||
self.sim.data.ctrl[:num_actuations] = ctrl + self.sim.data.qfrc_bias[:num_actuations].copy() / self.model.actuator_gear[:, 0]
|
||||
else:
|
||||
self.sim.data.ctrl[:num_actuations] = ctrl
|
||||
|
||||
try:
|
||||
self.sim.step()
|
||||
except mujoco_py.builder.MujocoException:
|
||||
error_in_sim = True
|
||||
|
||||
return error_in_sim
|
||||
|
||||
def render(self,
|
||||
mode='human',
|
||||
width=DEFAULT_SIZE,
|
||||
height=DEFAULT_SIZE,
|
||||
camera_id=None,
|
||||
camera_name=None):
|
||||
if mode == 'rgb_array' or mode == 'depth_array':
|
||||
if camera_id is not None and camera_name is not None:
|
||||
raise ValueError("Both `camera_id` and `camera_name` cannot be"
|
||||
" specified at the same time.")
|
||||
|
||||
no_camera_specified = camera_name is None and camera_id is None
|
||||
if no_camera_specified:
|
||||
camera_name = 'track'
|
||||
|
||||
if camera_id is None and camera_name in self.model._camera_name2id:
|
||||
camera_id = self.model.camera_name2id(camera_name)
|
||||
|
||||
self._get_viewer(mode).render(width, height, camera_id=camera_id)
|
||||
|
||||
if mode == 'rgb_array':
|
||||
# window size used for old mujoco-py:
|
||||
data = self._get_viewer(mode).read_pixels(width, height, depth=False)
|
||||
# original image is upside-down, so flip it
|
||||
return data[::-1, :, :]
|
||||
elif mode == 'depth_array':
|
||||
self._get_viewer(mode).render(width, height)
|
||||
# window size used for old mujoco-py:
|
||||
# Extract depth part of the read_pixels() tuple
|
||||
data = self._get_viewer(mode).read_pixels(width, height, depth=True)[1]
|
||||
# original image is upside-down, so flip it
|
||||
return data[::-1, :]
|
||||
elif mode == 'human':
|
||||
self._get_viewer(mode).render()
|
||||
|
||||
def close(self):
|
||||
if self.viewer is not None:
|
||||
# self.viewer.finish()
|
||||
self.viewer = None
|
||||
self._viewers = {}
|
||||
|
||||
def _get_viewer(self, mode):
|
||||
self.viewer = self._viewers.get(mode)
|
||||
if self.viewer is None:
|
||||
if mode == 'human':
|
||||
self.viewer = mujoco_py.MjViewer(self.sim)
|
||||
elif mode == 'rgb_array' or mode == 'depth_array':
|
||||
self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, -1)
|
||||
|
||||
self.viewer_setup()
|
||||
self._viewers[mode] = self.viewer
|
||||
return self.viewer
|
||||
|
||||
def get_body_com(self, body_name):
|
||||
return self.data.get_body_xpos(body_name)
|
||||
|
||||
def state_vector(self):
|
||||
return np.concatenate([
|
||||
self.sim.data.qpos.flat,
|
||||
self.sim.data.qvel.flat
|
||||
])
|
@ -1,10 +1,11 @@
|
||||
from gym import utils
|
||||
import os
|
||||
import numpy as np
|
||||
from alr_envs.mujoco import alr_mujoco_env
|
||||
from gym.envs.mujoco import MujocoEnv
|
||||
|
||||
|
||||
class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
|
||||
class ALRBallInACupEnv(MujocoEnv, utils.EzPickle):
|
||||
def __init__(self, n_substeps=4, apply_gravity_comp=True, simplified: bool = False,
|
||||
reward_type: str = None, context: np.ndarray = None):
|
||||
utils.EzPickle.__init__(**locals())
|
||||
|
@ -1,8 +1,8 @@
|
||||
from typing import Union
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class BallInACupMPWrapper(MPEnvWrapper):
|
||||
@ -24,6 +24,14 @@ class BallInACupMPWrapper(MPEnvWrapper):
|
||||
else:
|
||||
return self._start_pos
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.sim.data.qpos[0:7].copy()
|
||||
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.sim.data.qvel[0:7].copy()
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
# TODO: @Max I think the default value of returning to the start is reasonable here
|
||||
|
@ -1,15 +0,0 @@
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mp_env_api.env_wrappers.positional_env_wrapper import PositionalEnvWrapper
|
||||
|
||||
|
||||
class BallInACupPositionalWrapper(PositionalEnvWrapper):
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.sim.data.qpos[0:7].copy()
|
||||
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.sim.data.qvel[0:7].copy()
|
@ -1,11 +1,15 @@
|
||||
from gym import utils
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from alr_envs.mujoco import alr_mujoco_env
|
||||
from gym import utils
|
||||
from gym.envs.mujoco import MujocoEnv
|
||||
|
||||
|
||||
class ALRBeerpongEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
def __init__(self, n_substeps=4, apply_gravity_comp=True, reward_function=None):
|
||||
|
||||
class ALRBeerpongEnv(MujocoEnv, utils.EzPickle):
|
||||
def __init__(self, model_path, frame_skip, n_substeps=4, apply_gravity_comp=True, reward_function=None):
|
||||
utils.EzPickle.__init__(**locals())
|
||||
MujocoEnv.__init__(self, model_path=model_path, frame_skip=frame_skip)
|
||||
self._steps = 0
|
||||
|
||||
self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets",
|
||||
@ -25,12 +29,10 @@ class ALRBeerpongEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7])
|
||||
|
||||
self.context = None
|
||||
|
||||
utils.EzPickle.__init__(self)
|
||||
alr_mujoco_env.AlrMujocoEnv.__init__(self,
|
||||
self.xml_path,
|
||||
apply_gravity_comp=apply_gravity_comp,
|
||||
n_substeps=n_substeps)
|
||||
# alr_mujoco_env.AlrMujocoEnv.__init__(self,
|
||||
# self.xml_path,
|
||||
# apply_gravity_comp=apply_gravity_comp,
|
||||
# n_substeps=n_substeps)
|
||||
|
||||
self.sim_time = 8 # seconds
|
||||
self.sim_steps = int(self.sim_time / self.dt)
|
||||
|
@ -1,11 +1,13 @@
|
||||
from gym import utils
|
||||
import os
|
||||
import numpy as np
|
||||
from alr_envs.mujoco import alr_mujoco_env
|
||||
from gym.envs.mujoco import MujocoEnv
|
||||
|
||||
|
||||
class ALRBeerpongEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
class ALRBeerpongEnv(MujocoEnv, utils.EzPickle):
|
||||
def __init__(self, n_substeps=4, apply_gravity_comp=True, reward_function=None):
|
||||
utils.EzPickle.__init__(**locals())
|
||||
|
||||
self._steps = 0
|
||||
|
||||
self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets",
|
||||
@ -26,11 +28,12 @@ class ALRBeerpongEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
|
||||
|
||||
self.context = None
|
||||
|
||||
utils.EzPickle.__init__(self)
|
||||
alr_mujoco_env.AlrMujocoEnv.__init__(self,
|
||||
self.xml_path,
|
||||
apply_gravity_comp=apply_gravity_comp,
|
||||
n_substeps=n_substeps)
|
||||
MujocoEnv.__init__(self, model_path=self.xml_path, frame_skip=n_substeps)
|
||||
|
||||
# alr_mujoco_env.AlrMujocoEnv.__init__(self,
|
||||
# self.xml_path,
|
||||
# apply_gravity_comp=apply_gravity_comp,
|
||||
# n_substeps=n_substeps)
|
||||
|
||||
self.sim_time = 8 # seconds
|
||||
self.sim_steps = int(self.sim_time / self.dt)
|
||||
|
@ -1,22 +1,24 @@
|
||||
import collections
|
||||
import re
|
||||
from typing import Union
|
||||
|
||||
import gym
|
||||
from gym.envs.registration import register
|
||||
|
||||
|
||||
def make(
|
||||
id,
|
||||
seed=1,
|
||||
visualize_reward=True,
|
||||
from_pixels=False,
|
||||
height=84,
|
||||
width=84,
|
||||
camera_id=0,
|
||||
frame_skip=1,
|
||||
episode_length=1000,
|
||||
environment_kwargs=None,
|
||||
time_limit=None,
|
||||
channels_first=True
|
||||
id: str,
|
||||
seed: int = 1,
|
||||
visualize_reward: bool = True,
|
||||
from_pixels: bool = False,
|
||||
height: int = 84,
|
||||
width: int = 84,
|
||||
camera_id: int = 0,
|
||||
frame_skip: int = 1,
|
||||
episode_length: Union[None, int] = None,
|
||||
environment_kwargs: dict = {},
|
||||
time_limit: Union[None, float] = None,
|
||||
channels_first: bool = True
|
||||
):
|
||||
# Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/__init__.py
|
||||
# License: MIT
|
||||
@ -31,12 +33,16 @@ def make(
|
||||
assert not visualize_reward, 'cannot use visualize reward when learning from pixels'
|
||||
|
||||
# shorten episode length
|
||||
if episode_length is None:
|
||||
# Default lengths for benchmarking suite is 1000 and for manipulation tasks 250
|
||||
episode_length = 250 if domain_name == "manipulation" else 1000
|
||||
|
||||
max_episode_steps = (episode_length + frame_skip - 1) // frame_skip
|
||||
|
||||
if env_id not in gym.envs.registry.env_specs:
|
||||
task_kwargs = {}
|
||||
task_kwargs = {'random': seed}
|
||||
# if seed is not None:
|
||||
task_kwargs['random'] = seed
|
||||
# task_kwargs['random'] = seed
|
||||
if time_limit is not None:
|
||||
task_kwargs['time_limit'] = time_limit
|
||||
register(
|
||||
|
@ -1,6 +1,7 @@
|
||||
# Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/wrappers.py
|
||||
# License: MIT
|
||||
# Copyright (c) 2020 Denis Yarats
|
||||
import collections
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
@ -31,12 +32,21 @@ def _spec_to_box(spec):
|
||||
return spaces.Box(low, high, dtype=np.float32)
|
||||
|
||||
|
||||
def _flatten_obs(obs):
|
||||
obs_pieces = []
|
||||
for v in obs.values():
|
||||
flat = np.array([v]) if np.isscalar(v) else v.ravel()
|
||||
obs_pieces.append(flat)
|
||||
return np.concatenate(obs_pieces, axis=0)
|
||||
def _flatten_obs(obs: collections.MutableMapping):
|
||||
# obs_pieces = []
|
||||
# for v in obs.values():
|
||||
# flat = np.array([v]) if np.isscalar(v) else v.ravel()
|
||||
# obs_pieces.append(flat)
|
||||
# return np.concatenate(obs_pieces, axis=0)
|
||||
|
||||
if not isinstance(obs, collections.MutableMapping):
|
||||
raise ValueError(f'Requires dict-like observations structure. {type(obs)} found.')
|
||||
|
||||
# Keep key order consistent for non OrderedDicts
|
||||
keys = obs.keys() if isinstance(obs, collections.OrderedDict) else sorted(obs.keys())
|
||||
|
||||
obs_vals = [np.array([obs[key]]) if np.isscalar(obs[key]) else obs[key].ravel() for key in keys]
|
||||
return np.concatenate(obs_vals)
|
||||
|
||||
|
||||
class DMCWrapper(core.Env):
|
||||
@ -75,7 +85,7 @@ class DMCWrapper(core.Env):
|
||||
self._action_space = _spec_to_box([self._env.action_spec()])
|
||||
self._observation_space = _spec_to_box(self._env.observation_spec().values())
|
||||
|
||||
self._last_observation = None
|
||||
self._last_state = None
|
||||
self.viewer = None
|
||||
|
||||
# set seed
|
||||
@ -107,6 +117,10 @@ class DMCWrapper(core.Env):
|
||||
def action_space(self):
|
||||
return self._action_space
|
||||
|
||||
@property
|
||||
def dt(self):
|
||||
return self._env.control_timestep() * self._frame_skip
|
||||
|
||||
def seed(self, seed=None):
|
||||
self._action_space.seed(seed)
|
||||
self._observation_space.seed(seed)
|
||||
@ -123,19 +137,19 @@ class DMCWrapper(core.Env):
|
||||
if done:
|
||||
break
|
||||
|
||||
self._last_observation = _flatten_obs(time_step.observation)
|
||||
self._last_state = _flatten_obs(time_step.observation)
|
||||
obs = self._get_obs(time_step)
|
||||
extra['discount'] = time_step.discount
|
||||
return obs, reward, done, extra
|
||||
|
||||
def reset(self) -> np.ndarray:
|
||||
time_step = self._env.reset()
|
||||
self._last_observation = _flatten_obs(time_step.observation)
|
||||
self._last_state = _flatten_obs(time_step.observation)
|
||||
obs = self._get_obs(time_step)
|
||||
return obs
|
||||
|
||||
def render(self, mode='rgb_array', height=None, width=None, camera_id=0):
|
||||
if self._last_observation is None:
|
||||
if self._last_state is None:
|
||||
raise ValueError('Environment not ready to render. Call reset() first.')
|
||||
|
||||
# assert mode == 'rgb_array', 'only support rgb_array mode, given %s' % mode
|
||||
|
@ -3,7 +3,7 @@ from typing import Iterable, List, Type
|
||||
|
||||
import gym
|
||||
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
from mp_env_api.mp_wrappers.detpmp_wrapper import DetPMPWrapper
|
||||
from mp_env_api.mp_wrappers.dmp_wrapper import DmpWrapper
|
||||
|
||||
@ -32,7 +32,7 @@ def make_env_rank(env_id: str, seed: int, rank: int = 0):
|
||||
def make_env(env_id: str, seed, **kwargs):
|
||||
"""
|
||||
Converts an env_id to an environment with the gym API.
|
||||
This also works for DeepMind Control Suite env_wrappers
|
||||
This also works for DeepMind Control Suite interface_wrappers
|
||||
for which domain name and task name are expected to be separated by "-".
|
||||
Args:
|
||||
env_id: gym name or env_id of the form "domain_name-task_name" for DMC tasks
|
||||
@ -42,7 +42,7 @@ def make_env(env_id: str, seed, **kwargs):
|
||||
|
||||
"""
|
||||
try:
|
||||
# Add seed to kwargs in case it is a predefined dmc environment.
|
||||
# Add seed to kwargs in case it is a predefined gym+dmc hybrid environment.
|
||||
if env_id.startswith("dmc"):
|
||||
kwargs.update({"seed": seed})
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user