diff --git a/alr_envs/alr/__init__.py b/alr_envs/alr/__init__.py index 026f1a7..917e102 100644 --- a/alr_envs/alr/__init__.py +++ b/alr_envs/alr/__init__.py @@ -236,16 +236,6 @@ register( } ) -# Beerpong devel big table -register( - id='ALRBeerPong-v3', - entry_point='alr_envs.alr.mujoco:ALRBeerBongEnv', - max_episode_steps=600, - kwargs={ - "rndm_goal": True, - "cup_goal_pos": [-0.3, -1.2] - } - ) # Motion Primitive Environments @@ -413,32 +403,6 @@ for _v in _versions: ) ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) -## Beerpong- Big table devel - -register( - id='BeerpongProMP-v3', - entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper', - kwargs={ - "name": f"alr_envs:ALRBeerPong-v3", - "wrappers": [mujoco.beerpong.MPWrapper], - "mp_kwargs": { - "num_dof": 7, - "num_basis": 5, - "duration": 1, - "post_traj_time": 2, - "policy_type": "motor", - "weights_scale": 1, - "zero_start": True, - "zero_goal": False, - "policy_kwargs": { - "p_gains": np.array([ 1.5, 5, 2.55, 3, 2., 2, 1.25]), - "d_gains": np.array([0.02333333, 0.1, 0.0625, 0.08, 0.03, 0.03, 0.0125]) - } - } - } - ) -ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append('BeerpongProMP-v3') - ## Table Tennis ctxt_dim = [2, 4] for _v, cd in enumerate(ctxt_dim): @@ -453,7 +417,7 @@ for _v, cd in enumerate(ctxt_dim): "num_dof": 7, "num_basis": 2, "duration": 1.25, - "post_traj_time": 1.5, + "post_traj_time": 4.5, "policy_type": "motor", "weights_scale": 1.0, "zero_start": True, @@ -467,28 +431,28 @@ for _v, cd in enumerate(ctxt_dim): ) ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) -register( - id='TableTennisProMP-v2', - entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper', - kwargs={ - "name": "alr_envs:TableTennis2DCtxt-v1", - "wrappers": [mujoco.table_tennis.MPWrapper], - "mp_kwargs": { - "num_dof": 7, - "num_basis": 2, - "duration": 1., - "post_traj_time": 2.5, - "policy_type": "motor", - "weights_scale": 1, - "off": -0.05, - "bandwidth_factor": 3.5, - "zero_start": True, - "zero_goal": False, - "policy_kwargs": { - "p_gains": 0.5*np.array([1.0, 4.0, 2.0, 4.0, 1.0, 4.0, 1.0]), - "d_gains": 0.5*np.array([0.1, 0.4, 0.2, 0.4, 0.1, 0.4, 0.1]) - } - } - } -) -ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append("TableTennisProMP-v2") +# register( +# id='TableTennisProMP-v2', +# entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper', +# kwargs={ +# "name": "alr_envs:TableTennis2DCtxt-v1", +# "wrappers": [mujoco.table_tennis.MPWrapper], +# "mp_kwargs": { +# "num_dof": 7, +# "num_basis": 2, +# "duration": 1.25, +# "post_traj_time": 4.5, +# #"width": 0.01, +# #"off": 0.01, +# "policy_type": "motor", +# "weights_scale": 1.0, +# "zero_start": True, +# "zero_goal": False, +# "policy_kwargs": { +# "p_gains": 0.5*np.array([1.0, 4.0, 2.0, 4.0, 1.0, 4.0, 1.0]), +# "d_gains": 0.5*np.array([0.1, 0.4, 0.2, 0.4, 0.1, 0.4, 0.1]) +# } +# } +# } +# ) +# ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append("TableTennisProMP-v2") diff --git a/alr_envs/alr/mujoco/table_tennis/tt_gym.py b/alr_envs/alr/mujoco/table_tennis/tt_gym.py index e88bbc5..c93cd26 100644 --- a/alr_envs/alr/mujoco/table_tennis/tt_gym.py +++ b/alr_envs/alr/mujoco/table_tennis/tt_gym.py @@ -11,7 +11,8 @@ from alr_envs.alr.mujoco.table_tennis.tt_reward import TT_Reward #TODO: Check for simulation stability. Make sure the code runs even for sim crash # MAX_EPISODE_STEPS = 1750 -MAX_EPISODE_STEPS = 1375 +# MAX_EPISODE_STEPS = 1375 +MAX_EPISODE_STEPS = 2875 BALL_NAME_CONTACT = "target_ball_contact" BALL_NAME = "target_ball" TABLE_NAME = 'table_tennis_table'