Add open ai gym environments
This commit is contained in:
parent
6607d9cff9
commit
87eb093c2c
11
README.md
11
README.md
@ -48,6 +48,17 @@ All environments provide the full episode reward and additional information abou
|
||||
|
||||
[//]: |`HoleReacherDetPMP-v0`|
|
||||
|
||||
### OpenAi-gym Environments
|
||||
These environments are wrapped-versions of their OpenAi-gym counterparts.
|
||||
|
||||
|Name| Description|Horizon|Action Dimension|Context Dimension
|
||||
|---|---|---|---|---|
|
||||
|`ContinuousMountainCarDetPMP-v0`| A DetPmP wrapped version of the ContinuousMountainCar-v0 environment. | 100 | 1
|
||||
|`ReacherDetPMP-v2`| A DetPmP wrapped version of the Reacher-v2 environment. | 50 | 2
|
||||
|`FetchSlideDenseDetPMP-v1`| A DetPmP wrapped version of the FetchSlideDense-v1 environment. | 50 | 4
|
||||
|`FetchReachDenseDetPMP-v1`| A DetPmP wrapped version of the FetchReachDense-v1 environment. | 50 | 4
|
||||
|
||||
|
||||
### Stochastic Search
|
||||
|Name| Description|Horizon|Action Dimension|Observation Dimension
|
||||
|---|---|---|---|---|
|
||||
|
@ -7,6 +7,7 @@ from alr_envs.classic_control.viapoint_reacher.viapoint_reacher_mp_wrapper impor
|
||||
from alr_envs.dmc.Ball_in_the_cup_mp_wrapper import DMCBallInCupMPWrapper
|
||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_mp_wrapper import BallInACupMPWrapper
|
||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_positional_wrapper import BallInACupPositionalWrapper
|
||||
from alr_envs.open_ai import reacher_v2, continuous_mountain_car, fetch
|
||||
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
||||
|
||||
# Mujoco
|
||||
@ -560,6 +561,82 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
## Open AI
|
||||
register(
|
||||
id='ContinuousMountainCarDetPMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "gym.envs.classic_control:MountainCarContinuous-v0",
|
||||
"wrappers": [continuous_mountain_car.PositionalWrapper, continuous_mountain_car.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 1,
|
||||
"num_basis": 4,
|
||||
"duration": 100,
|
||||
"post_traj_time": 0,
|
||||
"width": 0.02,
|
||||
"policy_type": "motor",
|
||||
"policy_kwargs": {
|
||||
"p_gains": 1.,
|
||||
"d_gains": 1.
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ReacherDetPMP-v2',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "gym.envs.mujoco:Reacher-v2",
|
||||
"wrappers": [reacher_v2.PositionalWrapper, reacher_v2.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 2,
|
||||
"num_basis": 6,
|
||||
"duration": 1,
|
||||
"post_traj_time": 0,
|
||||
"width": 0.02,
|
||||
"policy_type": "motor",
|
||||
"policy_kwargs": {
|
||||
"p_gains": .6,
|
||||
"d_gains": .075
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='FetchSlideDenseDetPMP-v1',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "gym.envs.robotics:FetchSlideDense-v1",
|
||||
"wrappers": [fetch.PositionalWrapper, fetch.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 4,
|
||||
"num_basis": 5,
|
||||
"duration": 1,
|
||||
"post_traj_time": 0,
|
||||
"width": 0.02,
|
||||
"policy_type": "position"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='FetchReachDenseDetPMP-v1',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "gym.envs.robotics:FetchReachDense-v1",
|
||||
"wrappers": [fetch.PositionalWrapper, fetch.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 4,
|
||||
"num_basis": 5,
|
||||
"duration": 1,
|
||||
"post_traj_time": 0,
|
||||
"width": 0.02,
|
||||
"policy_type": "position"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
# BBO functions
|
||||
|
||||
|
41
alr_envs/examples/examples_open_ai.py
Normal file
41
alr_envs/examples/examples_open_ai.py
Normal file
@ -0,0 +1,41 @@
|
||||
from alr_envs.utils.make_env_helpers import make_env
|
||||
|
||||
|
||||
def example_mp(env_name, seed=1):
|
||||
"""
|
||||
Example for running a motion primitive based version of a OpenAI-gym environment, which is already registered.
|
||||
For more information on motion primitive specific stuff, look at the mp examples.
|
||||
Args:
|
||||
env_name: DetPMP env_id
|
||||
seed: seed
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
# While in this case gym.make() is possible to use as well, we recommend our custom make env function.
|
||||
env = make_env(env_name, seed)
|
||||
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
|
||||
# number of samples/full trajectories (multiple environment steps)
|
||||
for i in range(10):
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
rewards += reward
|
||||
|
||||
if done:
|
||||
print(rewards)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
|
||||
if __name__ == '__main__':
|
||||
# DMP - not supported yet
|
||||
#example_mp("ReacherDetPMP-v2")
|
||||
|
||||
# DetProMP
|
||||
example_mp("ContinuousMountainCarDetPMP-v0")
|
||||
example_mp("ReacherDetPMP-v2")
|
||||
example_mp("FetchReachDenseDetPMP-v1")
|
||||
example_mp("FetchSlideDenseDetPMP-v1")
|
||||
|
0
alr_envs/open_ai/__init__.py
Normal file
0
alr_envs/open_ai/__init__.py
Normal file
2
alr_envs/open_ai/continuous_mountain_car/__init__.py
Normal file
2
alr_envs/open_ai/continuous_mountain_car/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from alr_envs.open_ai.continuous_mountain_car.positional_wrapper import PositionalWrapper
|
||||
from alr_envs.open_ai.continuous_mountain_car.mp_wrapper import MPWrapper
|
17
alr_envs/open_ai/continuous_mountain_car/mp_wrapper.py
Normal file
17
alr_envs/open_ai/continuous_mountain_car/mp_wrapper.py
Normal file
@ -0,0 +1,17 @@
|
||||
from typing import Union
|
||||
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class MPWrapper(MPEnvWrapper):
|
||||
@property
|
||||
def start_pos(self):
|
||||
raise ValueError("Start position is not available")
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return 1.
|
@ -0,0 +1,13 @@
|
||||
from typing import Union
|
||||
import numpy as np
|
||||
from mp_env_api.env_wrappers.positional_env_wrapper import PositionalEnvWrapper
|
||||
|
||||
|
||||
class PositionalWrapper(PositionalEnvWrapper):
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray]:
|
||||
return np.array([self.state[1]])
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return np.array([self.state[0]])
|
2
alr_envs/open_ai/fetch/__init__.py
Normal file
2
alr_envs/open_ai/fetch/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from alr_envs.open_ai.fetch.positional_wrapper import PositionalWrapper
|
||||
from alr_envs.open_ai.fetch.mp_wrapper import MPWrapper
|
18
alr_envs/open_ai/fetch/mp_wrapper.py
Normal file
18
alr_envs/open_ai/fetch/mp_wrapper.py
Normal file
@ -0,0 +1,18 @@
|
||||
from typing import Union
|
||||
|
||||
from gym import spaces
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class MPWrapper(MPEnvWrapper):
|
||||
@property
|
||||
def start_pos(self):
|
||||
return self.initial_gripper_xpos
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self.env.dt
|
13
alr_envs/open_ai/fetch/positional_wrapper.py
Normal file
13
alr_envs/open_ai/fetch/positional_wrapper.py
Normal file
@ -0,0 +1,13 @@
|
||||
from typing import Union
|
||||
import numpy as np
|
||||
from mp_env_api.env_wrappers.positional_env_wrapper import PositionalEnvWrapper
|
||||
|
||||
|
||||
class PositionalWrapper(PositionalEnvWrapper):
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray]:
|
||||
return self._get_obs()["observation"][-5:-1]
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self._get_obs()["observation"][:4]
|
2
alr_envs/open_ai/reacher_v2/__init__.py
Normal file
2
alr_envs/open_ai/reacher_v2/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from alr_envs.open_ai.reacher_v2.positional_wrapper import PositionalWrapper
|
||||
from alr_envs.open_ai.reacher_v2.mp_wrapper import MPWrapper
|
18
alr_envs/open_ai/reacher_v2/mp_wrapper.py
Normal file
18
alr_envs/open_ai/reacher_v2/mp_wrapper.py
Normal file
@ -0,0 +1,18 @@
|
||||
from typing import Union
|
||||
|
||||
from mp_env_api.env_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class MPWrapper(MPEnvWrapper):
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
raise ValueError("Start position is not available")
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
return self.goal
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self.env.dt
|
13
alr_envs/open_ai/reacher_v2/positional_wrapper.py
Normal file
13
alr_envs/open_ai/reacher_v2/positional_wrapper.py
Normal file
@ -0,0 +1,13 @@
|
||||
from typing import Union
|
||||
import numpy as np
|
||||
from mp_env_api.env_wrappers.positional_env_wrapper import PositionalEnvWrapper
|
||||
|
||||
|
||||
class PositionalWrapper(PositionalEnvWrapper):
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray]:
|
||||
return self.sim.data.qvel[:2]
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self.sim.data.qpos[:2]
|
Loading…
Reference in New Issue
Block a user