updated for new mp_pytorch
This commit is contained in:
parent
3facda996c
commit
8903c2dc9f
File diff suppressed because it is too large
Load Diff
@ -1,152 +0,0 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from gym import utils
|
||||
from gym.envs.mujoco import MujocoEnv
|
||||
|
||||
import alr_envs.utils.utils as alr_utils
|
||||
|
||||
|
||||
class ALRReacherEnv(MujocoEnv, utils.EzPickle):
|
||||
def __init__(self, steps_before_reward: int = 200, n_links: int = 5, ctrl_cost_weight: int = 1,
|
||||
balance: bool = False):
|
||||
utils.EzPickle.__init__(**locals())
|
||||
|
||||
self._steps = 0
|
||||
self.steps_before_reward = steps_before_reward
|
||||
self.n_links = n_links
|
||||
|
||||
self.balance = balance
|
||||
self.balance_weight = 1.0
|
||||
self.ctrl_cost_weight = ctrl_cost_weight
|
||||
|
||||
self.reward_weight = 1
|
||||
if steps_before_reward == 200:
|
||||
self.reward_weight = 200
|
||||
elif steps_before_reward == 50:
|
||||
self.reward_weight = 50
|
||||
|
||||
if n_links == 5:
|
||||
file_name = 'reacher_5links.xml'
|
||||
elif n_links == 7:
|
||||
file_name = 'reacher_7links.xml'
|
||||
else:
|
||||
raise ValueError(f"Invalid number of links {n_links}, only 5 or 7 allowed.")
|
||||
|
||||
MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2)
|
||||
|
||||
def step(self, a):
|
||||
self._steps += 1
|
||||
|
||||
reward_dist = 0.0
|
||||
angular_vel = 0.0
|
||||
reward_balance = 0.0
|
||||
is_delayed = self.steps_before_reward > 0
|
||||
reward_ctrl = - np.square(a).sum() * self.ctrl_cost_weight
|
||||
if self._steps >= self.steps_before_reward:
|
||||
vec = self.get_body_com("fingertip") - self.get_body_com("target")
|
||||
reward_dist -= self.reward_weight * np.linalg.norm(vec)
|
||||
if is_delayed:
|
||||
# avoid giving this penalty for normal step based case
|
||||
# angular_vel -= 10 * np.linalg.norm(self.sim.data.qvel.flat[:self.n_links])
|
||||
angular_vel -= 10 * np.square(self.sim.data.qvel.flat[:self.n_links]).sum()
|
||||
# if is_delayed:
|
||||
# # Higher control penalty for sparse reward per timestep
|
||||
# reward_ctrl *= 10
|
||||
|
||||
if self.balance:
|
||||
reward_balance -= self.balance_weight * np.abs(
|
||||
alr_utils.angle_normalize(np.sum(self.sim.data.qpos.flat[:self.n_links]), type="rad"))
|
||||
|
||||
reward = reward_dist + reward_ctrl + angular_vel + reward_balance
|
||||
self.do_simulation(a, self.frame_skip)
|
||||
ob = self._get_obs()
|
||||
done = False
|
||||
return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl,
|
||||
velocity=angular_vel, reward_balance=reward_balance,
|
||||
end_effector=self.get_body_com("fingertip").copy(),
|
||||
goal=self.goal if hasattr(self, "goal") else None)
|
||||
|
||||
def viewer_setup(self):
|
||||
self.viewer.cam.trackbodyid = 0
|
||||
|
||||
# def reset_model(self):
|
||||
# qpos = self.init_qpos
|
||||
# if not hasattr(self, "goal"):
|
||||
# self.goal = np.array([-0.25, 0.25])
|
||||
# # self.goal = self.init_qpos.copy()[:2] + 0.05
|
||||
# qpos[-2:] = self.goal
|
||||
# qvel = self.init_qvel
|
||||
# qvel[-2:] = 0
|
||||
# self.set_state(qpos, qvel)
|
||||
# self._steps = 0
|
||||
#
|
||||
# return self._get_obs()
|
||||
|
||||
def reset_model(self):
|
||||
qpos = self.init_qpos.copy()
|
||||
while True:
|
||||
# full space
|
||||
# self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
|
||||
# I Quadrant
|
||||
# self.goal = self.np_random.uniform(low=0, high=self.n_links / 10, size=2)
|
||||
# II Quadrant
|
||||
# self.goal = np.random.uniform(low=[-self.n_links / 10, 0], high=[0, self.n_links / 10], size=2)
|
||||
# II + III Quadrant
|
||||
# self.goal = np.random.uniform(low=-self.n_links / 10, high=[0, self.n_links / 10], size=2)
|
||||
# I + II Quadrant
|
||||
self.goal = np.random.uniform(low=[-self.n_links / 10, 0], high=self.n_links, size=2)
|
||||
if np.linalg.norm(self.goal) < self.n_links / 10:
|
||||
break
|
||||
qpos[-2:] = self.goal
|
||||
qvel = self.init_qvel.copy()
|
||||
qvel[-2:] = 0
|
||||
self.set_state(qpos, qvel)
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs()
|
||||
|
||||
# def reset_model(self):
|
||||
# qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
|
||||
# while True:
|
||||
# self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
|
||||
# if np.linalg.norm(self.goal) < self.n_links / 10:
|
||||
# break
|
||||
# qpos[-2:] = self.goal
|
||||
# qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
|
||||
# qvel[-2:] = 0
|
||||
# self.set_state(qpos, qvel)
|
||||
# self._steps = 0
|
||||
#
|
||||
# return self._get_obs()
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self.sim.data.qpos.flat[:self.n_links]
|
||||
target = self.get_body_com("target")
|
||||
return np.concatenate([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
target[:2], # x-y of goal position
|
||||
self.sim.data.qvel.flat[:self.n_links], # angular velocity
|
||||
self.get_body_com("fingertip") - target, # goal distance
|
||||
[self._steps],
|
||||
])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
nl = 5
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = ALRReacherEnv(n_links=nl)
|
||||
obs = env.reset()
|
||||
|
||||
for i in range(2000):
|
||||
# objective.load_result("/tmp/cma")
|
||||
# test with random actions
|
||||
ac = env.action_space.sample()
|
||||
obs, rew, d, info = env.step(ac)
|
||||
if i % 10 == 0:
|
||||
env.render(mode=render_mode)
|
||||
if d:
|
||||
env.reset()
|
||||
|
||||
env.close()
|
@ -1,24 +0,0 @@
|
||||
from alr_envs.mp.episodic_wrapper import EpisodicWrapper
|
||||
from typing import Union, Tuple
|
||||
import numpy as np
|
||||
|
||||
|
||||
class NewMPWrapper(EpisodicWrapper):
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.env.sim.data.qpos.flat[:self.env.n_links]
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
||||
return self.env.sim.data.qvel.flat[:self.env.n_links]
|
||||
|
||||
def set_active_obs(self):
|
||||
return np.concatenate([
|
||||
[False] * self.env.n_links, # cos
|
||||
[False] * self.env.n_links, # sin
|
||||
[True] * 2, # goal position
|
||||
[False] * self.env.n_links, # angular velocity
|
||||
[False] * 3, # goal distance
|
||||
# self.get_body_com("target"), # only return target to make problem harder
|
||||
[False], # step
|
||||
])
|
@ -86,7 +86,7 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
bc_time = np.array(0 if not self.do_replanning else self.current_traj_steps * self.dt)
|
||||
# TODO we could think about initializing with the previous desired value in order to have a smooth transition
|
||||
# at least from the planning point of view.
|
||||
self.traj_gen.set_boundary_conditions(bc_time, self.current_pos, self.current_vel)
|
||||
self.traj_gen.set_initial_conditions(bc_time, self.current_pos, self.current_vel)
|
||||
self.traj_gen.set_duration(duration, self.dt)
|
||||
# traj_dict = self.traj_gen.get_trajs(get_pos=True, get_vel=True)
|
||||
position = get_numpy(self.traj_gen.get_traj_pos())
|
||||
|
@ -1,2 +1 @@
|
||||
from .mp_wrapper import MPWrapper
|
||||
from .new_mp_wrapper import NewMPWrapper
|
||||
|
@ -36,7 +36,8 @@ DEFAULT_BB_DICT_ProDMP = {
|
||||
'trajectory_generator_type': 'prodmp',
|
||||
'auto_scale_basis': True,
|
||||
'weights_scale': 10,
|
||||
'goal_scale': 0.
|
||||
# 'goal_scale': 0.,
|
||||
'disable_goal': True,
|
||||
},
|
||||
"phase_generator_kwargs": {
|
||||
'phase_generator_type': 'exp',
|
||||
|
Loading…
Reference in New Issue
Block a user