Merge pull request #60 from ALRhub/59-update-to-new-mp_pytorch-version

updated for new mp-pytorch version
This commit is contained in:
ottofabian 2023-01-17 09:51:56 +01:00 committed by GitHub
commit 8e91e32737
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 5 additions and 5 deletions

View File

@ -94,14 +94,14 @@ class BlackBoxWrapper(gym.ObservationWrapper):
clipped_params = np.clip(action, self.traj_gen_action_space.low, self.traj_gen_action_space.high)
self.traj_gen.set_params(clipped_params)
bc_time = np.array(0 if not self.do_replanning else self.current_traj_steps * self.dt)
init_time = np.array(0 if not self.do_replanning else self.current_traj_steps * self.dt)
# TODO we could think about initializing with the previous desired value in order to have a smooth transition
# at least from the planning point of view.
condition_pos = self.condition_pos if self.condition_pos is not None else self.current_pos
condition_vel = self.condition_vel if self.condition_vel is not None else self.current_vel
self.traj_gen.set_boundary_conditions(bc_time, condition_pos, condition_vel)
self.traj_gen.set_initial_conditions(init_time, condition_pos, condition_vel)
self.traj_gen.set_duration(duration, self.dt)
# traj_dict = self.traj_gen.get_trajs(get_pos=True, get_vel=True)
position = get_numpy(self.traj_gen.get_traj_pos())

View File

@ -33,7 +33,7 @@ def example_mp(env_name="HoleReacherProMP-v0", seed=1, iterations=1, render=True
# Just make sure the correct mode is set before executing the step.
env.render(mode="human")
else:
env.render(mode=None)
env.render()
# Now the action space is not the raw action but the parametrization of the trajectory generator,
# such as a ProMP
@ -155,7 +155,7 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
if __name__ == '__main__':
render = True
render = False
# DMP
example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)

View File

@ -22,7 +22,7 @@ def example_mp(env_name, seed=1, render=True):
if render and i % 2 == 0:
env.render(mode="human")
else:
env.render(mode=None)
env.render()
ac = env.action_space.sample()
obs, reward, done, info = env.step(ac)
returns += reward