Added more tests
This commit is contained in:
parent
6e4be06ffd
commit
915ffbe928
@ -2,3 +2,6 @@ class BaseController:
|
||||
|
||||
def get_action(self, des_pos, des_vel, c_pos, c_vel):
|
||||
raise NotImplementedError
|
||||
|
||||
def __call__(self, des_pos, des_vel, c_pos, c_vel):
|
||||
return self.get_action(des_pos, des_vel, c_pos, c_vel)
|
||||
|
@ -18,7 +18,8 @@ class MetaWorldController(BaseController):
|
||||
cur_pos = c_pos[:-1]
|
||||
xyz_pos = des_pos[:-1]
|
||||
|
||||
assert xyz_pos.shape == cur_pos.shape, \
|
||||
f"Mismatch in dimension between desired position {xyz_pos.shape} and current position {cur_pos.shape}"
|
||||
if xyz_pos.shape != cur_pos.shape:
|
||||
raise ValueError(f"Mismatch in dimension between desired position"
|
||||
f" {xyz_pos.shape} and current position {cur_pos.shape}")
|
||||
trq = np.hstack([(xyz_pos - cur_pos), gripper_pos])
|
||||
return trq
|
||||
|
@ -8,7 +8,6 @@ class PDController(BaseController):
|
||||
A PD-Controller. Using position and velocity information from a provided environment,
|
||||
the tracking_controller calculates a response based on the desired position and velocity
|
||||
|
||||
:param env: A position environment
|
||||
:param p_gains: Factors for the proportional gains
|
||||
:param d_gains: Factors for the differential gains
|
||||
"""
|
||||
@ -20,9 +19,11 @@ class PDController(BaseController):
|
||||
self.d_gains = d_gains
|
||||
|
||||
def get_action(self, des_pos, des_vel, c_pos, c_vel):
|
||||
assert des_pos.shape == c_pos.shape, \
|
||||
f"Mismatch in dimension between desired position {des_pos.shape} and current position {c_pos.shape}"
|
||||
assert des_vel.shape == c_vel.shape, \
|
||||
f"Mismatch in dimension between desired velocity {des_vel.shape} and current velocity {c_vel.shape}"
|
||||
if des_pos.shape != c_pos.shape:
|
||||
raise ValueError(f"Mismatch in dimension between desired position "
|
||||
f"{des_pos.shape} and current position {c_pos.shape}")
|
||||
if des_vel.shape != c_vel.shape:
|
||||
raise ValueError(f"Mismatch in dimension between desired velocity"
|
||||
f" {des_vel.shape} and current velocity {c_vel.shape}")
|
||||
trq = self.p_gains * (des_pos - c_pos) + self.d_gains * (des_vel - c_vel)
|
||||
return trq
|
||||
|
@ -5,12 +5,11 @@ import gym
|
||||
import numpy as np
|
||||
import pytest
|
||||
from gym import register
|
||||
from gym.wrappers import TimeLimit
|
||||
|
||||
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
|
||||
from gym.core import ActType, ObsType
|
||||
|
||||
import fancy_gym
|
||||
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
|
||||
from fancy_gym.utils.time_aware_observation import TimeAwareObservation
|
||||
|
||||
SEED = 1
|
||||
ENV_IDS = ['Reacher5d-v0', 'dmc:ball_in_cup-catch', 'metaworld:reach-v2', 'Reacher-v2']
|
||||
@ -19,11 +18,18 @@ WRAPPERS = [fancy_gym.envs.mujoco.reacher.MPWrapper, fancy_gym.dmc.suite.ball_in
|
||||
ALL_MP_ENVS = chain(*fancy_gym.ALL_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
|
||||
|
||||
|
||||
class Object(object):
|
||||
pass
|
||||
|
||||
|
||||
class ToyEnv(gym.Env):
|
||||
observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
|
||||
action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
|
||||
dt = 0.01
|
||||
|
||||
def __init__(self, a: int = 0, b: float = 0.0, c: list = [], d: dict = {}, e: Object = Object()):
|
||||
self.a, self.b, self.c, self.d, self.e = a, b, c, d, e
|
||||
|
||||
def reset(self, *, seed: Optional[int] = None, return_info: bool = False,
|
||||
options: Optional[dict] = None) -> Union[ObsType, Tuple[ObsType, dict]]:
|
||||
return np.array([-1])
|
||||
@ -61,6 +67,67 @@ def test_missing_wrapper(env_id: str):
|
||||
fancy_gym.make_bb(env_id, [], {}, {}, {}, {}, {})
|
||||
|
||||
|
||||
def test_missing_local_state():
|
||||
env = fancy_gym.make_bb('toy-v0', [RawInterfaceWrapper], {},
|
||||
{'trajectory_generator_type': 'promp'},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
env.reset()
|
||||
with pytest.raises(NotImplementedError):
|
||||
env.step(env.action_space.sample())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
@pytest.mark.parametrize('verbose', [1, 2])
|
||||
def test_verbosity(env_wrap: Tuple[str, Type[RawInterfaceWrapper]], verbose: int):
|
||||
env_id, wrapper_class = env_wrap
|
||||
env = fancy_gym.make_bb(env_id, [wrapper_class], {},
|
||||
{'trajectory_generator_type': 'promp'},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
env.reset()
|
||||
info_keys = env.step(env.action_space.sample())[3].keys()
|
||||
|
||||
env_step = fancy_gym.make(env_id, SEED)
|
||||
env_step.reset()
|
||||
info_keys_step = env_step.step(env_step.action_space.sample())[3].keys()
|
||||
|
||||
assert info_keys_step in info_keys
|
||||
assert 'trajectory_length' in info_keys
|
||||
|
||||
if verbose >= 2:
|
||||
mp_keys = ['position', 'velocities', 'step_actions', 'step_observations', 'step_rewards']
|
||||
assert mp_keys in info_keys
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
def test_length(env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
|
||||
env_id, wrapper_class = env_wrap
|
||||
env = fancy_gym.make_bb(env_id, [wrapper_class], {},
|
||||
{'trajectory_generator_type': 'promp'},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
env.reset()
|
||||
length = env.step(env.action_space.sample())[3]['trajectory_length']
|
||||
|
||||
assert length == env.spec.max_episode_steps
|
||||
|
||||
|
||||
@pytest.mark.parametrize('reward_aggregation', [np.sum, np.mean, np.median, lambda x: np.mean(x[::2])])
|
||||
def test_aggregation(reward_aggregation: callable):
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'reward_aggregation': reward_aggregation},
|
||||
{'trajectory_generator_type': 'promp'},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
env.reset()
|
||||
# ToyEnv only returns 1 as reward
|
||||
assert env.step(env.action_space.sample())[1] == reward_aggregation(np.ones(50, ))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
def test_context_space(env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
|
||||
env_id, wrapper_class = env_wrap
|
||||
@ -75,30 +142,74 @@ def test_context_space(env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
|
||||
assert env.observation_space.shape == wrapper.context_mask[wrapper.context_mask].shape
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env_id', ENV_IDS)
|
||||
@pytest.mark.parametrize('reward_aggregation', [np.sum, np.mean, np.median, lambda x: np.mean(x[::2])])
|
||||
def test_aggregation(env_id: str, reward_aggregation: callable):
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'reward_aggregation': reward_aggregation},
|
||||
@pytest.mark.parametrize('num_dof', [0, 1, 2, 5])
|
||||
@pytest.mark.parametrize('num_basis', [0, 1, 2, 5])
|
||||
@pytest.mark.parametrize('learn_tau', [True, False])
|
||||
@pytest.mark.parametrize('learn_delay', [True, False])
|
||||
def test_action_space(num_dof: int, num_basis: int, learn_tau: bool, learn_delay: bool):
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {},
|
||||
{'trajectory_generator_type': 'promp',
|
||||
'action_dim': num_dof
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear',
|
||||
'learn_tau': learn_tau,
|
||||
'learn_delay': learn_delay
|
||||
},
|
||||
{'basis_generator_type': 'rbf',
|
||||
'num_basis': num_basis
|
||||
})
|
||||
assert env.action_space.shape[0] == num_dof * num_basis + int(learn_tau) + int(learn_delay)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('a', [1])
|
||||
@pytest.mark.parametrize('b', [1.0])
|
||||
@pytest.mark.parametrize('c', [[1], [1.0], ['str'], [{'a': 'b'}], [np.ones(3, )]])
|
||||
@pytest.mark.parametrize('d', [{'a': 1}, {1: 2.0}, {'a': [1.0]}, {'a': np.ones(3, )}, {'a': {'a': 'b'}}])
|
||||
@pytest.mark.parametrize('e', [Object()])
|
||||
def test_change_env_kwargs(a: int, b: float, c: list, d: dict, e: Object):
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {},
|
||||
{'trajectory_generator_type': 'promp'},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear'},
|
||||
{'basis_generator_type': 'rbf'},
|
||||
a=a, b=b, c=c, d=d, e=e
|
||||
)
|
||||
assert a is env.a
|
||||
assert b is env.b
|
||||
assert c is env.c
|
||||
# Due to how gym works dict kwargs need to be copied and hence can only be checked to have the same content
|
||||
assert d == env.d
|
||||
assert e is env.e
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
|
||||
def test_learn_sub_trajectories(env_wrap: Tuple[str, Type[RawInterfaceWrapper]], add_time_aware_wrapper_before: bool):
|
||||
env_id, wrapper_class = env_wrap
|
||||
env_step = TimeAwareObservation(fancy_gym.make(env_id, SEED))
|
||||
wrappers = [wrapper_class]
|
||||
|
||||
# has time aware wrapper
|
||||
if add_time_aware_wrapper_before:
|
||||
wrappers += [TimeAwareObservation]
|
||||
|
||||
env = fancy_gym.make_bb(env_id, [wrapper_class], {'learn_sub_trajectories': True},
|
||||
{'trajectory_generator_type': 'promp'},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
env.reset()
|
||||
|
||||
# ToyEnv only returns 1 as reward
|
||||
assert env.step(env.action_space.sample())[1] == reward_aggregation(np.ones(50, ))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env_id', ENV_IDS)
|
||||
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
|
||||
def test_learn_sub_trajectories(env_id: str, add_time_aware_wrapper_before: bool):
|
||||
env_step = fancy_gym.make(env_id, SEED)
|
||||
env = fancy_gym.make_bb(env_id, [], {}, {}, {}, {'phase_generator_type': 'linear'}, {})
|
||||
|
||||
# has time aware wrapper
|
||||
if add_time_aware_wrapper_before:
|
||||
pass
|
||||
|
||||
assert env.learn_sub_trajectories
|
||||
assert env.learn_tau
|
||||
assert env.traj_gen.learn_tau
|
||||
assert env.observation_space == env_step.observation_space
|
||||
|
||||
env.reset()
|
||||
action = env.action_space.sample()
|
||||
obs, r, d, info = env.step(action)
|
||||
|
||||
length = info['trajectory_length']
|
||||
|
||||
factor = 1 / env.dt
|
||||
assert np.allclose(length * env.dt, np.round(factor * action[0]) / factor)
|
||||
assert np.allclose(length * env.dt, np.round(factor * env.traj_gen.tau.numpy()) / factor)
|
||||
|
73
test/test_controller.py
Normal file
73
test/test_controller.py
Normal file
@ -0,0 +1,73 @@
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from fancy_gym.black_box.factory import controller_factory
|
||||
|
||||
|
||||
@pytest.mark.parametrize('ctrl_type', controller_factory.ALL_TYPES)
|
||||
def test_initialization(ctrl_type: str):
|
||||
controller_factory.get_controller(ctrl_type)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('position', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('velocity', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
def test_velocity(position: np.ndarray, velocity: np.ndarray):
|
||||
ctrl = controller_factory.get_controller('velocity')
|
||||
a = ctrl(position, velocity, None, None)
|
||||
assert np.array_equal(a, velocity)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('position', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('velocity', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
def test_position(position: np.ndarray, velocity: np.ndarray):
|
||||
ctrl = controller_factory.get_controller('position')
|
||||
a = ctrl(position, velocity, None, None)
|
||||
assert np.array_equal(a, position)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('position', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('velocity', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('current_position', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('current_velocity', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('p_gains', [0, 1, 0.5, np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('d_gains', [0, 1, 0.5, np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
def test_pd(position: np.ndarray, velocity: np.ndarray, current_position: np.ndarray, current_velocity: np.ndarray,
|
||||
p_gains: Union[float, Tuple], d_gains: Union[float, Tuple]):
|
||||
ctrl = controller_factory.get_controller('motor', p_gains=p_gains, d_gains=d_gains)
|
||||
assert np.array_equal(ctrl.p_gains, p_gains)
|
||||
assert np.array_equal(ctrl.d_gains, d_gains)
|
||||
|
||||
a = ctrl(position, velocity, current_position, current_velocity)
|
||||
pd = p_gains * (position - current_position) + d_gains * (velocity - current_velocity)
|
||||
assert np.array_equal(a, pd)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('pos_vel', [(np.ones(3, ), np.ones(4, )),
|
||||
(np.ones(4, ), np.ones(3, )),
|
||||
(np.ones(4, ), np.ones(4, ))])
|
||||
def test_pd_invalid_shapes(pos_vel: Tuple[np.ndarray, np.ndarray]):
|
||||
position, velocity = pos_vel
|
||||
ctrl = controller_factory.get_controller('motor')
|
||||
with pytest.raises(ValueError):
|
||||
ctrl(position, velocity, np.ones(3, ), np.ones(3, ))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('position', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('current_position', [np.zeros(3, ), np.ones(3, ), np.arange(0, 3)])
|
||||
@pytest.mark.parametrize('gripper_pos', [0, 1, 0.5])
|
||||
def test_metaworld(position: np.ndarray, current_position: np.ndarray, gripper_pos: float):
|
||||
ctrl = controller_factory.get_controller('metaworld')
|
||||
|
||||
position_grip = np.append(position, gripper_pos)
|
||||
c_position_grip = np.append(current_position, -1)
|
||||
a = ctrl(position_grip, None, c_position_grip, None)
|
||||
assert a[-1] == gripper_pos
|
||||
assert np.array_equal(a[:-1], position - current_position)
|
||||
|
||||
|
||||
def test_metaworld_invalid_shapes():
|
||||
ctrl = controller_factory.get_controller('metaworld')
|
||||
with pytest.raises(ValueError):
|
||||
ctrl(np.ones(4, ), None, np.ones(3, ), None)
|
Loading…
Reference in New Issue
Block a user