This commit is contained in:
Maximilian Huettenrauch 2021-11-17 17:14:13 +01:00
parent 786d481c88
commit 928c540251
10 changed files with 351 additions and 28 deletions

View File

@ -83,7 +83,7 @@ register(
register( register(
id='HoleReacher-v1', id='HoleReacher-v1',
entry_point='alr_envs.alr.classic_control:HoleReacherEnv', entry_point='alr_envs.alr.classic_control:HoleReacherEnvOld',
max_episode_steps=200, max_episode_steps=200,
kwargs={ kwargs={
"n_links": 5, "n_links": 5,

View File

@ -1,3 +1,3 @@
from .hole_reacher.hole_reacher import HoleReacherEnv from .hole_reacher.hole_reacher import HoleReacherEnv, HoleReacherEnvOld
from .simple_reacher.simple_reacher import SimpleReacherEnv from .simple_reacher.simple_reacher import SimpleReacherEnv
from .viapoint_reacher.viapoint_reacher import ViaPointReacherEnv from .viapoint_reacher.viapoint_reacher import ViaPointReacherEnv

View File

@ -5,7 +5,7 @@ import matplotlib.pyplot as plt
import numpy as np import numpy as np
from gym import spaces from gym import spaces
from gym.utils import seeding from gym.utils import seeding
from alr_envs.classic_control.utils import check_self_collision from alr_envs.alr.classic_control.utils import intersect
class BaseReacherEnv(gym.Env): class BaseReacherEnv(gym.Env):
@ -16,7 +16,7 @@ class BaseReacherEnv(gym.Env):
""" """
def __init__(self, n_links: int, random_start: bool = True, def __init__(self, n_links: int, random_start: bool = True,
allow_self_collision: bool = False, collision_penalty: float = 1000): allow_self_collision: bool = False):
super().__init__() super().__init__()
self.link_lengths = np.ones(n_links) self.link_lengths = np.ones(n_links)
self.n_links = n_links self.n_links = n_links
@ -24,19 +24,21 @@ class BaseReacherEnv(gym.Env):
self.random_start = random_start self.random_start = random_start
# state
self._joints = None self._joints = None
self._joint_angles = None self._joint_angles = None
self._angle_velocity = None self._angle_velocity = None
self._is_collided = False
self.allow_self_collision = allow_self_collision
self.collision_penalty = collision_penalty
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)]) self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
self._start_vel = np.zeros(self.n_links) self._start_vel = np.zeros(self.n_links)
self.max_torque = 1 # joint limits
self.j_min = -np.pi * np.ones(n_links)
self.j_max = np.pi * np.ones(n_links)
self.max_vel = 1
self.steps_before_reward = 199 self.steps_before_reward = 199
action_bound = np.ones((self.n_links,)) * self.max_torque action_bound = np.ones((self.n_links,)) * self.max_vel
state_bound = np.hstack([ state_bound = np.hstack([
[np.pi] * self.n_links, # cos [np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin [np.pi] * self.n_links, # sin
@ -47,6 +49,8 @@ class BaseReacherEnv(gym.Env):
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape) self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape) self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
self.reward_function = None # Needs to be set in sub class
# containers for plotting # containers for plotting
self.metadata = {'render.modes': ["human"]} self.metadata = {'render.modes': ["human"]}
self.fig = None self.fig = None
@ -84,27 +88,21 @@ class BaseReacherEnv(gym.Env):
def step(self, action: np.ndarray): def step(self, action: np.ndarray):
""" """
A single step with action in torque space A single step with action in angular velocity space
""" """
# action = self._add_action_noise(action) acc = (action - self._angle_velocity) / self.dt
ac = np.clip(action, -self.max_torque, self.max_torque) self._angle_velocity = action
self._angle_velocity = self._angle_velocity + self.dt * ac
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints() self._update_joints()
if not self.allow_self_collision:
self_collision = check_self_collision(line_points_in_taskspace)
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
self_collision = True
self._is_collided = self._check_collisions() self._is_collided = self._check_collisions()
reward, info = self._get_reward(action) # reward, info = self._get_reward(action)
reward, info = self.reward_function.get_reward(self, acc)
self._steps += 1 self._steps += 1
done = False done = self._terminate(info)
return self._get_obs().copy(), reward, done, info return self._get_obs().copy(), reward, done, info
@ -118,6 +116,19 @@ class BaseReacherEnv(gym.Env):
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)]) x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0) self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
def _check_self_collision(self):
"""Checks whether line segments intersect"""
if np.any(self._joint_angles > self.j_max) or np.any(self._joint_angles < self.j_min):
return True
link_lines = np.stack((self._joints[:-1, :], self._joints[1:, :]), axis=1)
for i, line1 in enumerate(link_lines):
for line2 in link_lines[i + 2:, :]:
if intersect(line1[0], line1[-1], line2[0], line2[-1]):
return True
return False
@abstractmethod @abstractmethod
def _get_reward(self, action: np.ndarray) -> (float, dict): def _get_reward(self, action: np.ndarray) -> (float, dict):
pass pass
@ -130,6 +141,10 @@ class BaseReacherEnv(gym.Env):
def _check_collisions(self) -> bool: def _check_collisions(self) -> bool:
pass pass
@abstractmethod
def _terminate(self, info) -> bool:
return False
def seed(self, seed=None): def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed) self.np_random, seed = seeding.np_random(seed)
return [seed] return [seed]

View File

@ -6,10 +6,243 @@ import numpy as np
from gym.utils import seeding from gym.utils import seeding
from matplotlib import patches from matplotlib import patches
from alr_envs.alr.classic_control.base_reacher.base_reacher_direct import BaseReacherEnv
from alr_envs.alr.classic_control.utils import check_self_collision from alr_envs.alr.classic_control.utils import check_self_collision
class HoleReacherEnv(gym.Env): class HoleReacherEnv(BaseReacherEnv):
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
allow_wall_collision: bool = False, collision_penalty: float = 1000, rew_fct: str = "simple"):
super().__init__(n_links, random_start, allow_self_collision)
# provided initial parameters
self.initial_x = hole_x # x-position of center of hole
self.initial_width = hole_width # width of hole
self.initial_depth = hole_depth # depth of hole
# temp container for current env state
self._tmp_x = None
self._tmp_width = None
self._tmp_depth = None
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
action_bound = np.pi * np.ones((self.n_links,))
state_bound = np.hstack([
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
[np.inf] * self.n_links, # velocity
[np.inf], # hole width
# [np.inf], # hole depth
[np.inf] * 2, # x-y coordinates of target distance
[np.inf] # env steps, because reward start after n steps TODO: Maybe
])
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
if rew_fct == "simple":
from alr_envs.alr.classic_control.hole_reacher.simple_reward import HolereacherSimpleReward
self.reward_function = HolereacherSimpleReward(allow_self_collision, allow_wall_collision, collision_penalty)
def reset(self):
self._generate_hole()
self._set_patches()
return super().reset()
def _terminate(self, info):
return info["is_collided"]
def _generate_hole(self):
if self.initial_width is None:
width = self.np_random.uniform(0.15, 0.5)
else:
width = np.copy(self.initial_width)
if self.initial_x is None:
# sample whole on left or right side
direction = self.np_random.choice([-1, 1])
# Hole center needs to be half the width away from the arm to give a valid setting.
x = direction * self.np_random.uniform(width / 2, 3.5)
else:
x = np.copy(self.initial_x)
if self.initial_depth is None:
# TODO we do not want this right now.
depth = self.np_random.uniform(1, 1)
else:
depth = np.copy(self.initial_depth)
self._tmp_width = width
self._tmp_x = x
self._tmp_depth = depth
self._goal = np.hstack([self._tmp_x, -self._tmp_depth])
self._line_ground_left = np.array([-self.n_links, 0, x - width / 2, 0])
self._line_ground_right = np.array([x + width / 2, 0, self.n_links, 0])
self._line_ground_hole = np.array([x - width / 2, -depth, x + width / 2, -depth])
self._line_hole_left = np.array([x - width / 2, -depth, x - width / 2, 0])
self._line_hole_right = np.array([x + width / 2, -depth, x + width / 2, 0])
self.ground_lines = np.stack((self._line_ground_left,
self._line_ground_right,
self._line_ground_hole,
self._line_hole_left,
self._line_hole_right))
def _get_obs(self):
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self._tmp_width,
# self._tmp_hole_depth,
self.end_effector - self._goal,
self._steps
])
def _get_line_points(self, num_points_per_link=1):
theta = self._joint_angles[:, None]
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
accumulated_theta = np.cumsum(theta, axis=0)
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
x = np.cos(accumulated_theta) * self.link_lengths[:, None] * intermediate_points
y = np.sin(accumulated_theta) * self.link_lengths[:, None] * intermediate_points
end_effector[0, :, 0] = x[0, :]
end_effector[0, :, 1] = y[0, :]
for i in range(1, self.n_links):
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
# xy = np.stack((x, y), axis=2)
#
# self._joints[0] + np.cumsum(xy, axis=0)
return np.squeeze(end_effector + self._joints[0, :])
def check_wall_collision(self):
line_points = self._get_line_points(num_points_per_link=100)
# all points that are before the hole in x
r, c = np.where(line_points[:, :, 0] < (self._tmp_x - self._tmp_width / 2))
# check if any of those points are below surface
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
if nr_line_points_below_surface_before_hole > 0:
return True
# all points that are after the hole in x
r, c = np.where(line_points[:, :, 0] > (self._tmp_x + self._tmp_width / 2))
# check if any of those points are below surface
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
if nr_line_points_below_surface_after_hole > 0:
return True
# all points that are above the hole
r, c = np.where((line_points[:, :, 0] > (self._tmp_x - self._tmp_width / 2)) & (
line_points[:, :, 0] < (self._tmp_x + self._tmp_width / 2)))
# check if any of those points are below surface
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_depth)
if nr_line_points_below_surface_in_hole > 0:
return True
return False
# def check_wall_collision(self, ):
# """find the intersection of line segments A=(x1,y1)/(x2,y2) and
# B=(x3,y3)/(x4,y4). """
#
# link_lines = np.hstack((self._joints[:-1, :], self._joints[1:, :]))
#
# all_points_product = np.hstack(
# [np.repeat(link_lines, len(self.ground_lines), axis=0),
# np.tile(self.ground_lines, (len(link_lines), 1))])
#
# x1, y1, x2, y2, x3, y3, x4, y4 = all_points_product.T
#
# denom = ((x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4))
# # if denom == 0:
# # return False
# px = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / denom
# py = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / denom
# # if (px - x1) * (px - x2) < 0 and (py - y1) * (py - y2) < 0 \
# # and (px - x3) * (px - x4) < 0 and (py - y3) * (py - y4) < 0:
# # return True # [px, py]
# test = ((px - x1) * (px - x2) <= 0) & ((py - y1) * (py - y2) <= 0) & ((px - x3) * (px - x4) <= 0) & (
# (py - y3) * (py - y4) <= 0)
# if np.any(test):
# possible_collisions = np.stack((px, py)).T[test]
# for row in possible_collisions:
# if not np.any([np.allclose(row, x) for x in self._joints]):
# return True, row
#
# return False, None
def render(self, mode='human'):
if self.fig is None:
# Create base figure once on the beginning. Afterwards only update
plt.ion()
self.fig = plt.figure()
ax = self.fig.add_subplot(1, 1, 1)
# limits
lim = np.sum(self.link_lengths) + 0.5
ax.set_xlim([-lim, lim])
ax.set_ylim([-1.1, lim])
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
self._set_patches()
self.fig.show()
self.fig.gca().set_title(
f"Iteration: {self._steps}, distance: {np.linalg.norm(self.end_effector - self._goal) ** 2}")
if mode == "human":
# arm
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
self.fig.canvas.draw()
self.fig.canvas.flush_events()
elif mode == "partial":
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
alpha=self._steps / 200)
def _set_patches(self):
if self.fig is not None:
# self.fig.gca().patches = []
left_block = patches.Rectangle((-self.n_links, -self._tmp_depth),
self.n_links + self._tmp_x - self._tmp_width / 2,
self._tmp_depth,
fill=True, edgecolor='k', facecolor='k')
right_block = patches.Rectangle((self._tmp_x + self._tmp_width / 2, -self._tmp_depth),
self.n_links - self._tmp_x + self._tmp_width / 2,
self._tmp_depth,
fill=True, edgecolor='k', facecolor='k')
hole_floor = patches.Rectangle((self._tmp_x - self._tmp_width / 2, -self._tmp_depth),
self._tmp_width,
1 - self._tmp_depth,
fill=True, edgecolor='k', facecolor='k')
# Add the patch to the Axes
self.fig.gca().add_patch(left_block)
self.fig.gca().add_patch(right_block)
self.fig.gca().add_patch(hole_floor)
class HoleReacherEnvOld(gym.Env):
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None, def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False, hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
@ -312,3 +545,19 @@ class HoleReacherEnv(gym.Env):
super().close() super().close()
if self.fig is not None: if self.fig is not None:
plt.close(self.fig) plt.close(self.fig)
if __name__ == "__main__":
import time
env = HoleReacherEnv(5)
env.reset()
start = time.time()
for i in range(10000):
# env.check_wall_collision()
ac = env.action_space.sample()
obs, rew, done, info = env.step(ac)
# env.render()
if done:
env.reset()
print(time.time() - start)

View File

@ -18,6 +18,14 @@ class MPWrapper(MPEnvWrapper):
[False] # env steps [False] # env steps
]) ])
# @property
# def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
# return self._joint_angles.copy()
#
# @property
# def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
# return self._angle_velocity.copy()
@property @property
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]: def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
return self.env.current_pos return self.env.current_pos

View File

@ -0,0 +1,48 @@
import numpy as np
from alr_envs.alr.classic_control.utils import check_self_collision
class HolereacherSimpleReward:
def __init__(self, allow_self_collision, allow_wall_collision, collision_penalty):
self.collision_penalty = collision_penalty
# collision
self.allow_self_collision = allow_self_collision
self.allow_wall_collision = allow_wall_collision
self.collision_penalty = collision_penalty
self._is_collided = False
pass
def get_reward(self, env, action):
reward = 0
success = False
self_collision = False
wall_collision = False
# joints = np.hstack((env._joints[:-1, :], env._joints[1:, :]))
if not self.allow_self_collision:
self_collision = env._check_self_collision()
if not self.allow_wall_collision:
wall_collision = env.check_wall_collision()
self._is_collided = self_collision or wall_collision
if env._steps == 199 or self._is_collided:
# return reward only in last time step
# Episode also terminates when colliding, hence return reward
dist = np.linalg.norm(env.end_effector - env._goal)
success = dist < 0.005 and not self._is_collided
reward = - dist ** 2 - self.collision_penalty * self._is_collided
info = {"is_success": success,
"is_collided": self._is_collided}
acc = (action - env._angle_velocity) / env.dt
reward -= 5e-8 * np.sum(acc ** 2)
return reward, info

View File

@ -1,3 +1,6 @@
import numpy as np
def ccw(A, B, C): def ccw(A, B, C):
return (C[1] - A[1]) * (B[0] - A[0]) - (B[1] - A[1]) * (C[0] - A[0]) > 1e-12 return (C[1] - A[1]) * (B[0] - A[0]) - (B[1] - A[1]) * (C[0] - A[0]) > 1e-12

View File

@ -147,18 +147,18 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
if __name__ == '__main__': if __name__ == '__main__':
render = True render = False
# DMP # DMP
example_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=render) # example_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=10, render=render)
# ProMP # ProMP
example_mp("alr_envs:HoleReacherProMP-v1", seed=10, iterations=1, render=render) # example_mp("alr_envs:HoleReacherProMP-v1", seed=10, iterations=100, render=render)
# DetProMP # DetProMP
example_mp("alr_envs:HoleReacherDetPMP-v1", seed=10, iterations=1, render=render) example_mp("alr_envs:HoleReacherDetPMP-v1", seed=10, iterations=100, render=render)
# Altered basis functions # Altered basis functions
example_custom_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=render) # example_custom_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=render)
# Custom MP # Custom MP
example_fully_custom_mp(seed=10, iterations=1, render=render) # example_fully_custom_mp(seed=10, iterations=1, render=render)