added viapoint reacher
This commit is contained in:
parent
708478c626
commit
95250af31c
313
alr_envs/classic_control/viapoint_reacher.py
Normal file
313
alr_envs/classic_control/viapoint_reacher.py
Normal file
@ -0,0 +1,313 @@
|
||||
import gym
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import patches
|
||||
|
||||
|
||||
def ccw(A, B, C):
|
||||
return (C[1]-A[1]) * (B[0]-A[0]) - (B[1]-A[1]) * (C[0]-A[0]) > 1e-12
|
||||
|
||||
|
||||
# Return true if line segments AB and CD intersect
|
||||
def intersect(A, B, C, D):
|
||||
return ccw(A, C, D) != ccw(B, C, D) and ccw(A, B, C) != ccw(A, B, D)
|
||||
|
||||
|
||||
class HoleReacher(gym.Env):
|
||||
|
||||
def __init__(self, num_links, hole_x, hole_width, hole_depth, allow_self_collision=False,
|
||||
allow_wall_collision=False, collision_penalty=1000):
|
||||
self.hole_x = hole_x # x-position of center of hole
|
||||
self.hole_width = hole_width # width of hole
|
||||
self.hole_depth = hole_depth # depth of hole
|
||||
self.num_links = num_links
|
||||
self.link_lengths = np.ones((num_links, 1))
|
||||
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
|
||||
self.top_center_of_hole = np.hstack([hole_x, 0])
|
||||
self.left_wall_edge = np.hstack([hole_x - self.hole_width/2, 0])
|
||||
self.right_wall_edge = np.hstack([hole_x + self.hole_width / 2, 0])
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.allow_wall_collision = allow_wall_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self.start_pos = np.hstack([[np.pi/2], np.zeros(self.num_links - 1)])
|
||||
self.start_vel = np.zeros(self.num_links)
|
||||
self.weight_matrix_scale = 50 # for the holereacher, the dmp weights become quite large compared to the values of the goal attractor. this scaling is to ensure they are on similar scale for the optimizer
|
||||
|
||||
self.dt = 0.01
|
||||
self.time_limit = 2
|
||||
|
||||
action_bound = np.pi * np.ones((self.num_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.num_links, # cos
|
||||
[np.pi] * self.num_links, # sin
|
||||
[np.inf] * self.num_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
self.fig = None
|
||||
rect_1 = patches.Rectangle((-self.num_links, -1),
|
||||
self.num_links + self.hole_x - self.hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_2 = patches.Rectangle((self.hole_x + self.hole_width / 2, -1),
|
||||
self.num_links - self.hole_x + self.hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_3 = patches.Rectangle((self.hole_x - self.hole_width / 2, -1), self.hole_width,
|
||||
1 - self.hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
self.patches = [rect_1, rect_2, rect_3]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.num_links].T
|
||||
|
||||
def reset(self):
|
||||
self._joint_angles = self.start_pos
|
||||
self._angle_velocity = self.start_vel
|
||||
self._joints = np.zeros((self.num_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def step(self, action):
|
||||
"""
|
||||
a single step with an action in joint velocity space
|
||||
"""
|
||||
vel = action
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = vel
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
|
||||
self._update_joints()
|
||||
|
||||
# rew = self._reward()
|
||||
|
||||
# compute reward directly in step function
|
||||
|
||||
dist_reward = 0
|
||||
if not self._is_collided:
|
||||
if self._steps == 180:
|
||||
dist_reward = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
else:
|
||||
dist_reward = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
|
||||
reward = - dist_reward ** 2
|
||||
|
||||
reward -= 1e-6 * np.sum(acc**2)
|
||||
|
||||
if self._steps == 180:
|
||||
reward -= 0.1 * np.sum(vel**2) ** 2
|
||||
|
||||
if self._is_collided:
|
||||
reward -= self.collision_penalty
|
||||
|
||||
info = {"is_collided": self._is_collided}
|
||||
|
||||
self._steps += 1
|
||||
|
||||
done = self._steps * self.dt > self.time_limit or self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update _joints to get new end effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
|
||||
|
||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||
|
||||
self_collision = False
|
||||
wall_collision = False
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = self.check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
|
||||
self_collision = True
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = self.check_wall_collision(line_points_in_taskspace)
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self.bottom_center_of_hole,
|
||||
self._steps
|
||||
])
|
||||
|
||||
# def _reward(self):
|
||||
# dist_reward = 0
|
||||
# if not self._is_collided:
|
||||
# if self._steps == 180:
|
||||
# dist_reward = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
# else:
|
||||
# dist_reward = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
#
|
||||
# out = - dist_reward ** 2
|
||||
#
|
||||
# return out
|
||||
|
||||
def get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
if num_points_per_link > 1:
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link)
|
||||
else:
|
||||
intermediate_points = 1
|
||||
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
|
||||
endeffector = np.zeros(shape=(self.num_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
|
||||
endeffector[0, :, 0] = x[0, :]
|
||||
endeffector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.num_links):
|
||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(endeffector + self._joints[0, :])
|
||||
|
||||
def check_self_collision(self, line_points):
|
||||
for i, line1 in enumerate(line_points):
|
||||
for line2 in line_points[i+2:, :, :]:
|
||||
# if line1 != line2:
|
||||
if intersect(line1[0], line1[-1], line2[0], line2[-1]):
|
||||
return True
|
||||
return False
|
||||
|
||||
def check_wall_collision(self, line_points):
|
||||
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] < (self.hole_x - self.hole_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_before_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are after the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] > (self.hole_x + self.hole_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_after_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are above the hole
|
||||
r, c = np.where((line_points[:, :, 0] > (self.hole_x - self.hole_width / 2)) & (
|
||||
line_points[:, :, 0] < (self.hole_x + self.hole_width / 2)))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self.hole_depth)
|
||||
|
||||
if nr_line_points_below_surface_in_hole > 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
self.fig = plt.figure()
|
||||
# plt.ion()
|
||||
# plt.pause(0.01)
|
||||
else:
|
||||
plt.figure(self.fig.number)
|
||||
|
||||
if mode == "human":
|
||||
plt.cla()
|
||||
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-1.1, lim])
|
||||
# plt.draw()
|
||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
||||
# self.fig.canvas.flush_events()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps == 1:
|
||||
# fig, ax = plt.subplots()
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
# plt.pause(0.01)
|
||||
|
||||
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
|
||||
# ax.plot(line_points_in_taskspace[:, 0, 0],
|
||||
# line_points_in_taskspace[:, 0, 1],
|
||||
# line_points_in_taskspace[:, -1, 0],
|
||||
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-1.1, lim])
|
||||
plt.pause(0.01)
|
||||
|
||||
elif mode == "final":
|
||||
if self._steps == 199 or self._is_collided:
|
||||
# fig, ax = plt.subplots()
|
||||
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
|
||||
plt.xlim(-self.num_links, self.num_links), plt.ylim(-1, self.num_links)
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
def close(self):
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
nl = 5
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = HoleReacher(num_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=0.15, hole_depth=1, hole_x=1)
|
||||
env.reset()
|
||||
# env.render(mode=render_mode)
|
||||
|
||||
for i in range(200):
|
||||
# objective.load_result("/tmp/cma")
|
||||
# test with random actions
|
||||
ac = 2 * env.action_space.sample()
|
||||
# ac[0] += np.pi/2
|
||||
obs, rew, d, info = env.step(ac)
|
||||
env.render(mode=render_mode)
|
||||
|
||||
print(rew)
|
||||
|
||||
if d:
|
||||
break
|
||||
|
||||
env.close()
|
Loading…
Reference in New Issue
Block a user