table tennis 4D replanning works git add .git add .
This commit is contained in:
parent
b9c2348855
commit
99a514026f
@ -70,9 +70,9 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
# tricky_action_upperbound = [np.inf] * (self.traj_gen_action_space.shape[0] - 7)
|
||||
# tricky_action_lowerbound = [-np.inf] * (self.traj_gen_action_space.shape[0] - 7)
|
||||
# self.action_space = spaces.Box(np.array(tricky_action_lowerbound), np.array(tricky_action_upperbound), dtype=np.float32)
|
||||
self.action_space.low[0] = 0.5
|
||||
self.action_space.low[0] = 0.8
|
||||
self.action_space.high[0] = 1.5
|
||||
self.action_space.low[1] = 0.02
|
||||
self.action_space.low[1] = 0.05
|
||||
self.action_space.high[1] = 0.15
|
||||
self.observation_space = self._get_observation_space()
|
||||
|
||||
@ -99,8 +99,7 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
|
||||
def get_trajectory(self, action: np.ndarray) -> Tuple:
|
||||
# duration = self.duration
|
||||
# duration = self.duration - self.current_traj_steps * self.dt
|
||||
duration = 2.
|
||||
duration = self.duration - self.current_traj_steps * self.dt
|
||||
if self.learn_sub_trajectories:
|
||||
duration = None
|
||||
# reset with every new call as we need to set all arguments, such as tau, delay, again.
|
||||
@ -122,7 +121,7 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
self.condition_vel = torch.as_tensor(self.condition_vel, dtype=torch.float32)
|
||||
self.traj_gen.set_boundary_conditions(bc_time, self.condition_pos, self.condition_vel)
|
||||
# self.traj_gen.set_duration(duration, self.dt)
|
||||
self.traj_gen.set_duration(self.tau_first_prediction, self.dt)
|
||||
self.traj_gen.set_duration(duration, self.dt)
|
||||
# traj_dict = self.traj_gen.get_trajs(get_pos=True, get_vel=True)
|
||||
position = get_numpy(self.traj_gen.get_traj_pos())
|
||||
velocity = get_numpy(self.traj_gen.get_traj_vel())
|
||||
@ -164,12 +163,9 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
""" This function generates a trajectory based on a MP and then does the usual loop over reset and step"""
|
||||
time_valid = self.env.check_time_validity(action)
|
||||
|
||||
if time_valid:
|
||||
|
||||
if self.plan_counts == 0:
|
||||
self.tau_first_prediction = action[0]
|
||||
# time_valid = self.env.check_time_validity(action)
|
||||
#
|
||||
# if time_valid:
|
||||
|
||||
## tricky part, only use weights basis
|
||||
# basis_weights = action.reshape(7, -1)
|
||||
@ -256,9 +252,9 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
else:
|
||||
obs, trajectory_return, done, infos = self.env.invalid_traj_callback(action, position, velocity)
|
||||
return self.observation(obs), trajectory_return, done, infos
|
||||
else:
|
||||
obs, trajectory_return, done, infos = self.env.time_invalid_traj_callback(action)
|
||||
return self.observation(obs), trajectory_return, done, infos
|
||||
# else:
|
||||
# obs, trajectory_return, done, infos = self.env.time_invalid_traj_callback(action)
|
||||
# return self.observation(obs), trajectory_return, done, infos
|
||||
def render(self, **kwargs):
|
||||
"""Only set render options here, such that they can be used during the rollout.
|
||||
This only needs to be called once"""
|
||||
|
@ -72,6 +72,7 @@ DEFAULT_BB_DICT_ProDMP = {
|
||||
"wrappers": [],
|
||||
"trajectory_generator_kwargs": {
|
||||
'trajectory_generator_type': 'prodmp',
|
||||
'duration': 2.0,
|
||||
'weights_scale': 1.0,
|
||||
},
|
||||
"phase_generator_kwargs": {
|
||||
@ -254,7 +255,7 @@ for ctxt_dim in [2, 4]:
|
||||
register(
|
||||
id='TableTennis{}D-v0'.format(ctxt_dim),
|
||||
entry_point='fancy_gym.envs.mujoco:TableTennisEnv',
|
||||
max_episode_steps=500,
|
||||
max_episode_steps=350,
|
||||
kwargs={
|
||||
"ctxt_dim": ctxt_dim,
|
||||
'frame_skip': 4
|
||||
|
@ -51,8 +51,8 @@ class MPWrapper(RawInterfaceWrapper):
|
||||
time_invalid = action[0] > tau_bound[1] or action[0] < tau_bound[0] \
|
||||
or action[1] > delay_bound[1] or action[1] < delay_bound[0]
|
||||
if time_invalid or np.any(pos_traj > jnt_pos_high) or np.any(pos_traj < jnt_pos_low):
|
||||
return True
|
||||
return False
|
||||
return True
|
||||
|
||||
def invalid_traj_callback(self, action, pos_traj: np.ndarray, vel_traj: np.ndarray) \
|
||||
-> Tuple[np.ndarray, float, bool, dict]:
|
||||
|
@ -127,8 +127,8 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
|
||||
|
||||
def reset_model(self):
|
||||
self._steps = 0
|
||||
self._init_ball_state = self._generate_valid_init_ball(random_pos=False, random_vel=False)
|
||||
self._goal_pos = self._generate_goal_pos(random=False)
|
||||
self._init_ball_state = self._generate_valid_init_ball(random_pos=True, random_vel=False)
|
||||
self._goal_pos = self._generate_goal_pos(random=True)
|
||||
self.data.joint("tar_x").qpos = self._init_ball_state[0]
|
||||
self.data.joint("tar_y").qpos = self._init_ball_state[1]
|
||||
self.data.joint("tar_z").qpos = self._init_ball_state[2]
|
||||
|
@ -161,7 +161,7 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
render = False
|
||||
render = True
|
||||
# DMP
|
||||
# example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user