This commit is contained in:
Maximilian Huettenrauch 2021-06-01 16:52:54 +02:00
parent 746d408a76
commit a0a9c9c7fb
4 changed files with 18 additions and 9 deletions

View File

@ -210,7 +210,7 @@ register(
"hole_width": 0.25,
"hole_depth": 1,
"hole_x": 2,
"collision_penalty": 100,
"collision_penalty": 2,
}
)

View File

@ -68,6 +68,10 @@ class ALRBallInACupEnv(alr_mujoco_env.AlrMujocoEnv, utils.EzPickle):
def current_vel(self):
return self.sim.data.qvel[0:7].copy()
def reset(self):
self.reward_function.reset(None)
return super().reset()
def reset_model(self):
init_pos_all = self.init_qpos.copy()
init_pos_robot = self._start_pos

View File

@ -37,6 +37,7 @@ class BallInACupReward(alr_reward_fct.AlrReward):
self.dists_final = []
self.costs = []
self.action_costs = []
self.angle_costs = []
self.cup_angles = []
def compute_reward(self, action, env):
@ -56,8 +57,11 @@ class BallInACupReward(alr_reward_fct.AlrReward):
self.dists_final.append(np.linalg.norm(goal_final_pos - ball_pos))
self.ball_traj[env._steps, :] = ball_pos
cup_quat = np.copy(env.sim.data.body_xquat[env.sim.model._body_name2id["cup"]])
self.cup_angles.append(np.arctan2(2 * (cup_quat[0] * cup_quat[1] + cup_quat[2] * cup_quat[3]),
1 - 2 * (cup_quat[1]**2 + cup_quat[2]**2)))
cup_angle = np.arctan2(2 * (cup_quat[0] * cup_quat[1] + cup_quat[2] * cup_quat[3]),
1 - 2 * (cup_quat[1]**2 + cup_quat[2]**2))
cost_angle = (cup_angle - np.pi / 2) ** 2
self.angle_costs.append(cost_angle)
self.cup_angles.append(cup_angle)
action_cost = np.sum(np.square(action))
self.action_costs.append(action_cost)
@ -67,7 +71,8 @@ class BallInACupReward(alr_reward_fct.AlrReward):
if env._steps == env.sim_steps - 1 or self._is_collided:
t_min_dist = np.argmin(self.dists)
angle_min_dist = self.cup_angles[t_min_dist]
cost_angle = (angle_min_dist - np.pi / 2)**2
# cost_angle = (angle_min_dist - np.pi / 2)**2
min_dist = self.dists[t_min_dist]
dist_final = self.dists_final[-1]
@ -76,11 +81,11 @@ class BallInACupReward(alr_reward_fct.AlrReward):
cost = 0.5 * dist_final + 0.05 * cost_angle # TODO: Increase cost_angle weight # 0.5 * min_dist +
# reward = np.exp(-2 * cost) - 1e-2 * action_cost - self.collision_penalty * int(self._is_collided)
# reward = - dist_final**2 - 1e-4 * cost_angle - 1e-5 * action_cost - self.collision_penalty * int(self._is_collided)
reward = - dist_final**2 - min_dist_final**2 - 1e-4 * cost_angle - 1e-5 * action_cost - self.collision_penalty * int(self._is_collided)
reward = - dist_final**2 - min_dist_final**2 - 1e-4 * cost_angle - 5e-4 * action_cost - self.collision_penalty * int(self._is_collided)
success = dist_final < 0.05 and ball_in_cup and not self._is_collided
crash = self._is_collided
else:
reward = - 1e-5 * action_cost # TODO: increase action_cost weight
reward = - 5e-4 * action_cost - 1e-4 * cost_angle # TODO: increase action_cost weight
success = False
crash = False

View File

@ -106,10 +106,10 @@ def example_async_contextual_sampler(env_name="alr_envs:SimpleReacherDMP-v1", n_
if __name__ == '__main__':
# example_mujoco()
# example_dmp("alr_envs:SimpleReacherDMP-v1")
example_mp("alr_envs:SimpleReacherDMP-v1")
# example_async("alr_envs:LongSimpleReacherDMP-v0", 4)
# example_async_contextual_sampler()
# env = gym.make("alr_envs:HoleReacherDetPMP-v1")
env_name = "alr_envs:ALRBallInACupSimpleDetPMP-v0"
# env_name = "alr_envs:ALRBallInACupSimpleDetPMP-v0"
# example_async_sampler(env_name)
example_mp(env_name)
# example_mp(env_name)