mainly tidied up beerpong.py and beerpong_reward_staged.py

This commit is contained in:
Onur 2022-06-30 17:55:00 +02:00
parent fea2ae7d11
commit a7051cd8b7
6 changed files with 120 additions and 124 deletions

View File

@ -24,7 +24,7 @@ ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS = {"DMP": [], "ProMP": []}
DEFAULT_BB_DICT = { DEFAULT_BB_DICT = {
"name": 'EnvName', "name": 'EnvName',
"wrappers": [], "wrappers": [],
"traj_gen_kwargs": { "trajectory_generator_kwargs": {
'trajectory_generator_type': 'promp' 'trajectory_generator_type': 'promp'
}, },
"phase_generator_kwargs": { "phase_generator_kwargs": {
@ -231,7 +231,6 @@ register(
entry_point='alr_envs.alr.mujoco:ALRBeerBongEnvStepBased', entry_point='alr_envs.alr.mujoco:ALRBeerBongEnvStepBased',
max_episode_steps=300, max_episode_steps=300,
kwargs={ kwargs={
"rndm_goal": True,
"cup_goal_pos": [-0.3, -1.2], "cup_goal_pos": [-0.3, -1.2],
"frame_skip": 2 "frame_skip": 2
} }
@ -243,7 +242,6 @@ register(
entry_point='alr_envs.alr.mujoco:ALRBeerBongEnvFixedReleaseStep', entry_point='alr_envs.alr.mujoco:ALRBeerBongEnvFixedReleaseStep',
max_episode_steps=300, max_episode_steps=300,
kwargs={ kwargs={
"rndm_goal": True,
"cup_goal_pos": [-0.3, -1.2], "cup_goal_pos": [-0.3, -1.2],
"frame_skip": 2 "frame_skip": 2
} }
@ -355,7 +353,7 @@ for _v in _versions:
_env_id = f'{_name[0]}ProMP-{_name[1]}' _env_id = f'{_name[0]}ProMP-{_name[1]}'
kwargs_dict_hole_reacher_promp = deepcopy(DEFAULT_BB_DICT) kwargs_dict_hole_reacher_promp = deepcopy(DEFAULT_BB_DICT)
kwargs_dict_hole_reacher_promp['wrappers'].append(classic_control.hole_reacher.MPWrapper) kwargs_dict_hole_reacher_promp['wrappers'].append(classic_control.hole_reacher.MPWrapper)
kwargs_dict_hole_reacher_promp['traj_gen_kwargs']['weight_scale'] = 2 kwargs_dict_hole_reacher_promp['trajectory_generator_kwargs']['weight_scale'] = 2
kwargs_dict_hole_reacher_promp['controller_kwargs']['controller_type'] = 'velocity' kwargs_dict_hole_reacher_promp['controller_kwargs']['controller_type'] = 'velocity'
kwargs_dict_hole_reacher_promp['name'] = f"alr_envs:{_v}" kwargs_dict_hole_reacher_promp['name'] = f"alr_envs:{_v}"
register( register(

View File

@ -2,12 +2,12 @@ from typing import Tuple, Union
import numpy as np import numpy as np
from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper from alr_envs.mp.raw_interface_wrapper import RawInterfaceWrapper
class MPWrapper(RawInterfaceWrapper): class MPWrapper(RawInterfaceWrapper):
def get_context_mask(self): def context_mask(self):
return np.hstack([ return np.hstack([
[self.env.random_start] * self.env.n_links, # cos [self.env.random_start] * self.env.n_links, # cos
[self.env.random_start] * self.env.n_links, # sin [self.env.random_start] * self.env.n_links, # sin
@ -25,3 +25,7 @@ class MPWrapper(RawInterfaceWrapper):
@property @property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.env.current_vel return self.env.current_vel
@property
def dt(self) -> Union[float, int]:
return self.env.dt

View File

@ -19,12 +19,9 @@ CUP_POS_MAX = np.array([1.42, -1.25])
# CUP_POS_MAX = np.array([0.16, -1.7]) # CUP_POS_MAX = np.array([0.16, -1.7])
class ALRBeerBongEnv(MujocoEnv, utils.EzPickle): class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
def __init__( def __init__(self, frame_skip=2, apply_gravity_comp=True):
self, frame_skip=1, apply_gravity_comp=True, noisy=False,
rndm_goal=False, cup_goal_pos=None
):
cup_goal_pos = np.array(cup_goal_pos if cup_goal_pos is not None else [-0.3, -1.2, 0.840]) cup_goal_pos = np.array([-0.3, -1.2, 0.840])
if cup_goal_pos.shape[0] == 2: if cup_goal_pos.shape[0] == 2:
cup_goal_pos = np.insert(cup_goal_pos, 2, 0.840) cup_goal_pos = np.insert(cup_goal_pos, 2, 0.840)
self.cup_goal_pos = np.array(cup_goal_pos) self.cup_goal_pos = np.array(cup_goal_pos)
@ -38,9 +35,7 @@ class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
self.j_min = np.array([-2.6, -1.985, -2.8, -0.9, -4.55, -1.5707, -2.7]) self.j_min = np.array([-2.6, -1.985, -2.8, -0.9, -4.55, -1.5707, -2.7])
self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7]) self.j_max = np.array([2.6, 1.985, 2.8, 3.14159, 1.25, 1.5707, 2.7])
self.rndm_goal = rndm_goal
self.apply_gravity_comp = apply_gravity_comp self.apply_gravity_comp = apply_gravity_comp
self.add_noise = noisy
self._start_pos = np.array([0.0, 1.35, 0.0, 1.18, 0.0, -0.786, -1.59]) self._start_pos = np.array([0.0, 1.35, 0.0, 1.18, 0.0, -0.786, -1.59])
self._start_vel = np.zeros(7) self._start_vel = np.zeros(7)
@ -48,17 +43,13 @@ class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
self.ball_site_id = 0 self.ball_site_id = 0
self.ball_id = 11 self.ball_id = 11
# self._release_step = 175 # time step of ball release
# self._release_step = 130 # time step of ball release
self.release_step = 100 # time step of ball release self.release_step = 100 # time step of ball release
self.ep_length = 600 // frame_skip self.ep_length = 600 // frame_skip
self.cup_table_id = 10 self.cup_table_id = 10
if noisy: self.add_noise = False
self.noise_std = 0.01
else:
self.noise_std = 0
reward_function = BeerPongReward reward_function = BeerPongReward
self.reward_function = reward_function() self.reward_function = reward_function()
self.repeat_action = frame_skip self.repeat_action = frame_skip
@ -74,7 +65,7 @@ class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
return self._start_vel return self._start_vel
def reset(self): def reset(self):
self.reward_function.reset(self.add_noise) self.reward_function.reset()
return super().reset() return super().reset()
def reset_model(self): def reset_model(self):
@ -88,10 +79,8 @@ class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
start_pos[0:7] = init_pos_robot start_pos[0:7] = init_pos_robot
self.set_state(start_pos, init_vel) self.set_state(start_pos, init_vel)
self.sim.model.body_pos[self.cup_table_id] = self.cup_goal_pos
start_pos[7::] = self.sim.data.site_xpos[self.ball_site_id, :].copy() start_pos[7::] = self.sim.data.site_xpos[self.ball_site_id, :].copy()
self.set_state(start_pos, init_vel) self.set_state(start_pos, init_vel)
if self.rndm_goal:
xy = self.np_random.uniform(CUP_POS_MIN, CUP_POS_MAX) xy = self.np_random.uniform(CUP_POS_MIN, CUP_POS_MAX)
xyz = np.zeros(3) xyz = np.zeros(3)
xyz[:2] = xy xyz[:2] = xy
@ -115,12 +104,9 @@ class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
if self._steps < self.release_step: if self._steps < self.release_step:
self.sim.data.qpos[7::] = self.sim.data.site_xpos[self.ball_site_id, :].copy() self.sim.data.qpos[7::] = self.sim.data.site_xpos[self.ball_site_id, :].copy()
self.sim.data.qvel[7::] = self.sim.data.site_xvelp[self.ball_site_id, :].copy() self.sim.data.qvel[7::] = self.sim.data.site_xvelp[self.ball_site_id, :].copy()
elif self._steps == self.release_step and self.add_noise:
self.sim.data.qvel[7::] += self.noise_std * np.random.randn(3)
crash = False crash = False
except mujoco_py.builder.MujocoException: except mujoco_py.builder.MujocoException:
crash = True crash = True
# joint_cons_viol = self.check_traj_in_joint_limits()
ob = self._get_obs() ob = self._get_obs()
@ -184,14 +170,14 @@ class ALRBeerBongEnv(MujocoEnv, utils.EzPickle):
class ALRBeerBongEnvFixedReleaseStep(ALRBeerBongEnv): class ALRBeerBongEnvFixedReleaseStep(ALRBeerBongEnv):
def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None): def __init__(self, frame_skip=2, apply_gravity_comp=True):
super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos) super().__init__(frame_skip, apply_gravity_comp)
self.release_step = 62 # empirically evaluated for frame_skip=2! self.release_step = 62 # empirically evaluated for frame_skip=2!
class ALRBeerBongEnvStepBasedEpisodicReward(ALRBeerBongEnv): class ALRBeerBongEnvStepBasedEpisodicReward(ALRBeerBongEnv):
def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None): def __init__(self, frame_skip=2, apply_gravity_comp=True):
super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos) super().__init__(frame_skip, apply_gravity_comp)
self.release_step = 62 # empirically evaluated for frame_skip=2! self.release_step = 62 # empirically evaluated for frame_skip=2!
def step(self, a): def step(self, a):
@ -245,18 +231,21 @@ class ALRBeerBongEnvStepBasedEpisodicReward(ALRBeerBongEnv):
if __name__ == "__main__": if __name__ == "__main__":
# env = ALRBeerBongEnv(rndm_goal=True) env = ALRBeerBongEnv(frame_skip=2)
# env = ALRBeerBongEnvStepBased(frame_skip=2, rndm_goal=True) # env = ALRBeerBongEnvStepBased(frame_skip=2)
# env = ALRBeerBongEnvStepBasedEpisodicReward(frame_skip=2, rndm_goal=True) # env = ALRBeerBongEnvStepBasedEpisodicReward(frame_skip=2)
env = ALRBeerBongEnvFixedReleaseStep(frame_skip=2, rndm_goal=True) # env = ALRBeerBongEnvFixedReleaseStep(frame_skip=2)
import time import time
env.reset() env.reset()
env.render("human") env.render("human")
for i in range(1500): for i in range(1500):
ac = 10 * env.action_space.sample() # ac = 10 * env.action_space.sample()
ac = np.ones(7)
# ac = np.zeros(7) # ac = np.zeros(7)
# ac[0] = -1 # ac[0] = 0
# ac[1] = -0.01
# ac[3] = -0.01
# if env._steps > 150: # if env._steps > 150:
# ac[0] = 1 # ac[0] = 1
obs, rew, d, info = env.step(ac) obs, rew, d, info = env.step(ac)

View File

@ -32,6 +32,21 @@ class BeerPongReward:
self.dists = None self.dists = None
self.dists_final = None self.dists_final = None
self.action_costs = None self.action_costs = None
self.ball_ground_contact_first = False
self.ball_table_contact = False
self.ball_wall_contact = False
self.ball_cup_contact = False
self.ball_in_cup = False
self.dist_ground_cup = -1 # distance floor to cup if first floor contact
### IDs
self.ball_collision_id = None
self.table_collision_id = None
self.wall_collision_id = None
self.cup_table_collision_id = None
self.ground_collision_id = None
self.cup_collision_ids = None
self.robot_collision_ids = None
self.reset() self.reset()
self.is_initialized = False self.is_initialized = False
@ -50,25 +65,27 @@ class BeerPongReward:
if not self.is_initialized: if not self.is_initialized:
self.is_initialized = True self.is_initialized = True
self.ball_id = env.sim.model._body_name2id["ball"] # TODO: Find a more elegant way to acces to the geom ids in each step -> less code
self.goal_id = env.sim.model._site_name2id["cup_goal_table"] self.ball_collision_id = {env.model.geom_name2id("ball_geom")}
self.goal_final_id = env.sim.model._site_name2id["cup_goal_final_table"] # self.ball_collision_id = env.model.geom_name2id("ball_geom")
self.cup_table_id = env.sim.model._body_name2id["cup_table"] self.table_collision_id = {env.model.geom_name2id("table_contact_geom")}
# self.table_collision_id = env.model.geom_name2id("table_contact_geom")
self.ball_collision_id = env.sim.model._geom_name2id["ball_geom"] self.wall_collision_id = {env.model.geom_name2id("wall")}
self.table_collision_id = env.sim.model._geom_name2id["table_contact_geom"] # self.wall_collision_id = env.model.geom_name2id("wall")
self.wall_collision_id = env.sim.model._geom_name2id["wall"] self.cup_table_collision_id = {env.model.geom_name2id("cup_base_table_contact")}
self.cup_table_collision_id = env.sim.model._geom_name2id["cup_base_table_contact"] # self.cup_table_collision_id = env.model.geom_name2id("cup_base_table_contact")
self.ground_collision_id = env.sim.model._geom_name2id["ground"] self.ground_collision_id = {env.model.geom_name2id("ground")}
self.cup_collision_ids = [env.sim.model._geom_name2id[name] for name in self.cup_collision_objects] # self.ground_collision_id = env.model.geom_name2id("ground")
self.robot_collision_ids = [env.sim.model._geom_name2id[name] for name in self.robot_collision_objects] self.cup_collision_ids = set(env.model.geom_name2id(name) for name in self.cup_collision_objects)
# self.cup_collision_ids = [env.model.geom_name2id(name) for name in self.cup_collision_objects]
self.robot_collision_ids = [env.model.geom_name2id(name) for name in self.robot_collision_objects]
def compute_reward(self, env, action): def compute_reward(self, env, action):
goal_pos = env.sim.data.site_xpos[self.goal_id] goal_pos = env.data.get_site_xpos("cup_goal_table")
ball_pos = env.sim.data.body_xpos[self.ball_id] ball_pos = env.data.get_body_xpos("ball")
ball_vel = env.sim.data.body_xvelp[self.ball_id] ball_vel = env.data.get_body_xvelp("ball")
goal_final_pos = env.sim.data.site_xpos[self.goal_final_id] goal_final_pos = env.data.get_site_xpos("cup_goal_final_table")
self.check_contacts(env.sim) self.check_contacts(env.sim)
self.dists.append(np.linalg.norm(goal_pos - ball_pos)) self.dists.append(np.linalg.norm(goal_pos - ball_pos))
@ -77,16 +94,16 @@ class BeerPongReward:
if self.ball_ground_contact_first and self.dist_ground_cup == -1 else self.dist_ground_cup if self.ball_ground_contact_first and self.dist_ground_cup == -1 else self.dist_ground_cup
action_cost = np.sum(np.square(action)) action_cost = np.sum(np.square(action))
self.action_costs.append(np.copy(action_cost)) self.action_costs.append(np.copy(action_cost))
# # ##################### Reward function which does not force to bounce once on the table (quad dist) ############ # # ##################### Reward function which does not force to bounce once on the table (quad dist) #########
self._is_collided = self._check_collision_with_itself(env.sim, self.robot_collision_ids) # Comment Onur: Is this needed?
# self._is_collided = self._check_collision_with_itself(env.sim, self.robot_collision_ids)
if env._steps == env.ep_length - 1 or self._is_collided: if env._steps == env.ep_length - 1:# or self._is_collided:
min_dist = np.min(self.dists) min_dist = np.min(self.dists)
final_dist = self.dists_final[-1] final_dist = self.dists_final[-1]
if self.ball_ground_contact_first: if self.ball_ground_contact_first:
min_dist_coeff, final_dist_coeff, ground_contact_dist_coeff, rew_offset = 1, 0.5, 2, -4 # relative rew offset when first bounding on ground min_dist_coeff, final_dist_coeff, ground_contact_dist_coeff, rew_offset = 1, 0.5, 2, -4
# min_dist_coeff, final_dist_coeff, ground_contact_dist_coeff, rew_offset = 1, 0.5, 0, -6 # absolute rew offset when first bouncing on ground
else: else:
if not self.ball_in_cup: if not self.ball_in_cup:
if not self.ball_table_contact and not self.ball_cup_contact and not self.ball_wall_contact: if not self.ball_table_contact and not self.ball_cup_contact and not self.ball_wall_contact:
@ -95,85 +112,74 @@ class BeerPongReward:
min_dist_coeff, final_dist_coeff, ground_contact_dist_coeff, rew_offset = 1, 0.5, 0, -2 min_dist_coeff, final_dist_coeff, ground_contact_dist_coeff, rew_offset = 1, 0.5, 0, -2
else: else:
min_dist_coeff, final_dist_coeff, ground_contact_dist_coeff, rew_offset = 0, 1, 0, 0 min_dist_coeff, final_dist_coeff, ground_contact_dist_coeff, rew_offset = 0, 1, 0, 0
# dist_ground_cup = 1 * self.dist_ground_cup
action_cost = 1e-4 * np.mean(action_cost) action_cost = 1e-4 * np.mean(action_cost)
reward = rew_offset - min_dist_coeff * min_dist ** 2 - final_dist_coeff * final_dist ** 2 - \ reward = rew_offset - min_dist_coeff * min_dist ** 2 - final_dist_coeff * final_dist ** 2 - \
action_cost - ground_contact_dist_coeff * self.dist_ground_cup ** 2 action_cost - ground_contact_dist_coeff * self.dist_ground_cup ** 2
# 1e-7*np.mean(action_cost)
# release step punishment # release step punishment
min_time_bound = 0.1 min_time_bound = 0.1
max_time_bound = 1.0 max_time_bound = 1.0
release_time = env.release_step * env.dt release_time = env.release_step * env.dt
release_time_rew = int(release_time < min_time_bound) * (-30 - 10 * (release_time - min_time_bound) ** 2) \ release_time_rew = int(release_time < min_time_bound) * (-30 - 10 * (release_time - min_time_bound) ** 2) + \
+ int(release_time > max_time_bound) * (-30 - 10 * (release_time - max_time_bound) ** 2) int(release_time > max_time_bound) * (-30 - 10 * (release_time - max_time_bound) ** 2)
reward += release_time_rew reward += release_time_rew
success = self.ball_in_cup success = self.ball_in_cup
# print('release time :', release_time)
# print('dist_ground_cup :', dist_ground_cup)
else: else:
action_cost = 1e-2 * action_cost action_cost = 1e-2 * action_cost
reward = - action_cost reward = - action_cost
# reward = - 1e-4 * action_cost
# reward = 0
success = False success = False
# ################################################################################################################ # ##############################################################################################################
infos = {} infos = {"success": success, "ball_pos": ball_pos.copy(),
infos["success"] = success "ball_vel": ball_vel.copy(), "action_cost": action_cost, "task_reward": reward, "is_collided": False} # TODO: Check if is collided is needed
infos["is_collided"] = self._is_collided
infos["ball_pos"] = ball_pos.copy()
infos["ball_vel"] = ball_vel.copy()
infos["action_cost"] = action_cost
infos["task_reward"] = reward
return reward, infos return reward, infos
def check_contacts(self, sim): def check_contacts(self, sim):
if not self.ball_table_contact: if not self.ball_table_contact:
self.ball_table_contact = self._check_collision_single_objects(sim, self.ball_collision_id, self.ball_table_contact = self._check_collision(sim, self.ball_collision_id, self.table_collision_id)
self.table_collision_id)
if not self.ball_cup_contact: if not self.ball_cup_contact:
self.ball_cup_contact = self._check_collision_with_set_of_objects(sim, self.ball_collision_id, self.ball_cup_contact = self._check_collision(sim, self.ball_collision_id, self.cup_collision_ids)
self.cup_collision_ids)
if not self.ball_wall_contact: if not self.ball_wall_contact:
self.ball_wall_contact = self._check_collision_single_objects(sim, self.ball_collision_id, self.ball_wall_contact = self._check_collision(sim, self.ball_collision_id, self.wall_collision_id)
self.wall_collision_id)
if not self.ball_in_cup: if not self.ball_in_cup:
self.ball_in_cup = self._check_collision_single_objects(sim, self.ball_collision_id, self.ball_in_cup = self._check_collision(sim, self.ball_collision_id, self.cup_table_collision_id)
self.cup_table_collision_id)
if not self.ball_ground_contact_first: if not self.ball_ground_contact_first:
if not self.ball_table_contact and not self.ball_cup_contact and not self.ball_wall_contact and not self.ball_in_cup: if not self.ball_table_contact and not self.ball_cup_contact and not self.ball_wall_contact \
self.ball_ground_contact_first = self._check_collision_single_objects(sim, self.ball_collision_id, and not self.ball_in_cup:
self.ball_ground_contact_first = self._check_collision(sim, self.ball_collision_id,
self.ground_collision_id) self.ground_collision_id)
def _check_collision_single_objects(self, sim, id_1, id_2): # Checks if id_set1 has a collision with id_set2
for coni in range(0, sim.data.ncon): def _check_collision(self, sim, id_set_1, id_set_2):
"""
If id_set_2 is set to None, it will check for a collision with itself (id_set_1).
"""
collision_id_set = id_set_2 - id_set_1 if id_set_2 is not None else id_set_1
for coni in range(sim.data.ncon):
con = sim.data.contact[coni] con = sim.data.contact[coni]
if ((con.geom1 in id_set_1 and con.geom2 in collision_id_set) or
collision = con.geom1 == id_1 and con.geom2 == id_2 (con.geom2 in id_set_1 and con.geom1 in collision_id_set)):
collision_trans = con.geom1 == id_2 and con.geom2 == id_1
if collision or collision_trans:
return True return True
return False return False
def _check_collision_with_itself(self, sim, collision_ids): # def _check_collision_with_itself(self, sim, collision_ids):
col_1, col_2 = False, False # col_1, col_2 = False, False
for j, id in enumerate(collision_ids): # for j, id in enumerate(collision_ids):
col_1 = self._check_collision_with_set_of_objects(sim, id, collision_ids[:j]) # col_1 = self._check_collision_with_set_of_objects(sim, id, collision_ids[:j])
if j != len(collision_ids) - 1: # if j != len(collision_ids) - 1:
col_2 = self._check_collision_with_set_of_objects(sim, id, collision_ids[j + 1:]) # col_2 = self._check_collision_with_set_of_objects(sim, id, collision_ids[j + 1:])
else: # else:
col_2 = False # col_2 = False
collision = True if col_1 or col_2 else False # collision = True if col_1 or col_2 else False
return collision # return collision
def _check_collision_with_set_of_objects(self, sim, id_1, id_list): ### This function will not be needed if we really do not need to check for collision with itself
for coni in range(0, sim.data.ncon): # def _check_collision_with_set_of_objects(self, sim, id_1, id_list):
con = sim.data.contact[coni] # for coni in range(0, sim.data.ncon):
# con = sim.data.contact[coni]
collision = con.geom1 in id_list and con.geom2 == id_1 #
collision_trans = con.geom1 == id_1 and con.geom2 in id_list # collision = con.geom1 in id_list and con.geom2 == id_1
# collision_trans = con.geom1 == id_1 and con.geom2 in id_list
if collision or collision_trans: #
return True # if collision or collision_trans:
return False # return True
# return False

View File

@ -1 +1 @@
from .new_mp_wrapper import MPWrapper from .mp_wrapper import MPWrapper

View File

@ -7,12 +7,12 @@ import numpy as np
from gym.envs.registration import EnvSpec, registry from gym.envs.registration import EnvSpec, registry
from gym.wrappers import TimeAwareObservation from gym.wrappers import TimeAwareObservation
from alr_envs.black_box.factory.basis_generator_factory import get_basis_generator from alr_envs.mp.basis_generator_factory import get_basis_generator
from alr_envs.black_box.black_box_wrapper import BlackBoxWrapper from alr_envs.mp.black_box_wrapper import BlackBoxWrapper
from alr_envs.black_box.controller.controller_factory import get_controller from alr_envs.mp.controllers.controller_factory import get_controller
from alr_envs.black_box.factory.trajectory_generator_factory import get_trajectory_generator from alr_envs.mp.mp_factory import get_trajectory_generator
from alr_envs.black_box.factory.phase_generator_factory import get_phase_generator from alr_envs.mp.phase_generator_factory import get_phase_generator
from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper from alr_envs.mp.raw_interface_wrapper import RawInterfaceWrapper
from alr_envs.utils.utils import nested_update from alr_envs.utils.utils import nested_update
@ -46,7 +46,6 @@ def make(env_id, seed, **kwargs):
spec = registry.get(env_id) spec = registry.get(env_id)
# This access is required to allow for nested dict updates # This access is required to allow for nested dict updates
all_kwargs = deepcopy(spec._kwargs) all_kwargs = deepcopy(spec._kwargs)
# TODO append wrapper here
nested_update(all_kwargs, **kwargs) nested_update(all_kwargs, **kwargs)
return _make(env_id, seed, **all_kwargs) return _make(env_id, seed, **all_kwargs)
@ -225,8 +224,8 @@ def make_bb_env_helper(**kwargs):
seed = kwargs.pop("seed", None) seed = kwargs.pop("seed", None)
wrappers = kwargs.pop("wrappers") wrappers = kwargs.pop("wrappers")
black_box_kwargs = kwargs.pop('black_box_kwargs', {})
traj_gen_kwargs = kwargs.pop("traj_gen_kwargs", {}) traj_gen_kwargs = kwargs.pop("traj_gen_kwargs", {})
black_box_kwargs = kwargs.pop('black_box_kwargs', {})
contr_kwargs = kwargs.pop("controller_kwargs", {}) contr_kwargs = kwargs.pop("controller_kwargs", {})
phase_kwargs = kwargs.pop("phase_generator_kwargs", {}) phase_kwargs = kwargs.pop("phase_generator_kwargs", {})
basis_kwargs = kwargs.pop("basis_generator_kwargs", {}) basis_kwargs = kwargs.pop("basis_generator_kwargs", {})