reacher adjustments

This commit is contained in:
Fabian 2022-05-05 16:53:56 +02:00
parent 640f3b2d90
commit ad30e732c8

View File

@ -39,11 +39,18 @@ class ALRReacherEnv(MujocoEnv, utils.EzPickle):
reward_dist = 0.0
angular_vel = 0.0
reward_balance = 0.0
is_delayed = self.steps_before_reward > 0
reward_ctrl = - np.square(a).sum()
if self._steps >= self.steps_before_reward:
vec = self.get_body_com("fingertip") - self.get_body_com("target")
reward_dist -= self.reward_weight * np.linalg.norm(vec)
angular_vel -= np.linalg.norm(self.sim.data.qvel.flat[:self.n_links])
reward_ctrl = - np.square(a).sum()
if is_delayed:
# avoid giving this penalty for normal step based case
# angular_vel -= 10 * np.linalg.norm(self.sim.data.qvel.flat[:self.n_links])
angular_vel -= 10 * np.square(self.sim.data.qvel.flat[:self.n_links]).sum()
if is_delayed:
# Higher control penalty for sparse reward per timestep
reward_ctrl *= 10
if self.balance:
reward_balance -= self.balance_weight * np.abs(
@ -56,63 +63,66 @@ class ALRReacherEnv(MujocoEnv, utils.EzPickle):
return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl,
velocity=angular_vel, reward_balance=reward_balance,
end_effector=self.get_body_com("fingertip").copy(),
goal=self.goal if hasattr(self, "goal") else None,
joint_pos = self.sim.data.qpos.flat[:self.n_links].copy(),
joint_vel = self.sim.data.qvel.flat[:self.n_links].copy())
goal=self.goal if hasattr(self, "goal") else None)
def viewer_setup(self):
self.viewer.cam.trackbodyid = 0
# def reset_model(self):
# qpos = self.init_qpos
# if not hasattr(self, "goal"):
# self.goal = np.array([-0.25, 0.25])
# # self.goal = self.init_qpos.copy()[:2] + 0.05
# qpos[-2:] = self.goal
# qvel = self.init_qvel
# qvel[-2:] = 0
# self.set_state(qpos, qvel)
# self._steps = 0
#
# return self._get_obs()
def reset_model(self):
# qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
qpos = self.init_qpos
qpos = self.init_qpos.copy()
while True:
self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
# self.goal = self.np_random.uniform(low=0, high=self.n_links / 10, size=2)
# self.goal = np.random.uniform(low=[-self.n_links / 10, 0], high=[0, self.n_links / 10], size=2)
if np.linalg.norm(self.goal) < self.n_links / 10:
break
qpos[-2:] = self.goal
qvel = self.init_qvel# + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
qvel = self.init_qvel.copy()
qvel[-2:] = 0
self.set_state(qpos, qvel)
self._steps = 0
return self._get_obs()
# def reset_model(self):
# qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos
# while True:
# self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2)
# if np.linalg.norm(self.goal) < self.n_links / 10:
# break
# qpos[-2:] = self.goal
# qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
# qvel[-2:] = 0
# self.set_state(qpos, qvel)
# self._steps = 0
#
# return self._get_obs()
def _get_obs(self):
theta = self.sim.data.qpos.flat[:self.n_links]
target = self.get_body_com("target")
return np.concatenate([
np.cos(theta),
np.sin(theta),
self.sim.data.qpos.flat[self.n_links:], # this is goal position
self.sim.data.qvel.flat[:self.n_links], # this is angular velocity
self.get_body_com("fingertip") - self.get_body_com("target"),
# self.get_body_com("target"), # only return target to make problem harder
target[:2], # x-y of goal position
self.sim.data.qvel.flat[:self.n_links], # angular velocity
self.get_body_com("fingertip") - target, # goal distance
[self._steps],
])
class ALRReacherOptCtrlEnv(ALRReacherEnv):
def __init__(self, steps_before_reward=200, n_links=5, balance=False):
self.goal = np.array([0.1, 0.1])
super(ALRReacherOptCtrlEnv, self).__init__(steps_before_reward, n_links, balance)
def _get_obs(self):
theta = self.sim.data.qpos.flat[:self.n_links]
tip_pos = self.get_body_com("fingertip")
return np.concatenate([
tip_pos[:2],
theta,
self.sim.data.qvel.flat[:self.n_links], # this is angular velocity
])
def reset_model(self):
qpos = self.init_qpos
qpos[-2:] = self.goal
qvel = self.init_qvel
qvel[-2:] = 0
self.set_state(qpos, qvel)
self._steps = 0
return self._get_obs()
if __name__ == '__main__':
nl = 5
@ -130,4 +140,4 @@ if __name__ == '__main__':
if d:
env.reset()
env.close()
env.close()