sequencing and replanning

This commit is contained in:
Fabian 2022-06-29 16:30:36 +02:00
parent 9b48fc9d48
commit b200cf4b69
2 changed files with 34 additions and 55 deletions

View File

@ -8,6 +8,7 @@ from mp_pytorch.mp.mp_interfaces import MPInterface
from alr_envs.mp.controllers.base_controller import BaseController
from alr_envs.mp.raw_interface_wrapper import RawInterfaceWrapper
from alr_envs.utils.utils import get_numpy
class BlackBoxWrapper(gym.ObservationWrapper, ABC):
@ -15,7 +16,7 @@ class BlackBoxWrapper(gym.ObservationWrapper, ABC):
def __init__(self,
env: RawInterfaceWrapper,
trajectory_generator: MPInterface, tracking_controller: BaseController,
duration: float, verbose: int = 1, sequencing=True, reward_aggregation: callable = np.sum):
duration: float, verbose: int = 1, sequencing: bool = True, reward_aggregation: callable = np.sum):
"""
gym.Wrapper for leveraging a black box approach with a trajectory generator.
@ -33,67 +34,50 @@ class BlackBoxWrapper(gym.ObservationWrapper, ABC):
self.env = env
self.duration = duration
self.sequencing = sequencing
# self.traj_steps = int(duration / self.dt)
# self.post_traj_steps = self.env.spec.max_episode_steps - self.traj_steps
# duration = self.env.max_episode_steps * self.dt
self.current_traj_steps = 0
# trajectory generation
self.trajectory_generator = trajectory_generator
self.tracking_controller = tracking_controller
# self.weight_scale = weight_scale
# self.time_steps = np.linspace(0, self.duration, self.traj_steps)
# self.trajectory_generator.set_mp_times(self.time_steps)
if not sequencing:
self.trajectory_generator.set_mp_duration(np.array([self.duration]), np.array([self.dt]))
else:
# sequencing stuff
pass
self.trajectory_generator.set_duration(np.array([self.duration]), np.array([self.dt]))
# reward computation
self.reward_aggregation = reward_aggregation
# spaces
self.mp_action_space = self.get_mp_action_space()
self.return_context_observation = not (self.sequencing) # TODO or we_do_replanning?)
self.traj_gen_action_space = self.get_traj_gen_action_space()
self.action_space = self.get_action_space()
self.observation_space = spaces.Box(low=self.env.observation_space.low[self.env.context_mask],
high=self.env.observation_space.high[self.env.context_mask],
dtype=self.env.observation_space.dtype)
# rendering
self.render_mode = None
self.render_kwargs = {}
self.verbose = verbose
@property
def dt(self):
return self.env.dt
def observation(self, observation):
return observation[self.env.context_mask]
# return context space if we are
return observation[self.context_mask] if self.return_context_observation else observation
def get_trajectory(self, action: np.ndarray) -> Tuple:
clipped_params = np.clip(action, self.mp_action_space.low, self.mp_action_space.high)
clipped_params = np.clip(action, self.traj_gen_action_space.low, self.traj_gen_action_space.high)
self.trajectory_generator.set_params(clipped_params)
# if self.trajectory_generator.learn_tau:
# self.trajectory_generator.set_mp_duration(self.trajectory_generator.tau, np.array([self.dt]))
self.trajectory_generator.set_mp_duration(None if self.sequencing else self.duration, np.array([self.dt]))
self.trajectory_generator.set_boundary_conditions(bc_time=, bc_pos=self.current_pos,
# TODO: Bruce said DMP, ProMP, ProDMP can have 0 bc_time
self.trajectory_generator.set_boundary_conditions(bc_time=np.zeros((1,)), bc_pos=self.current_pos,
bc_vel=self.current_vel)
traj_dict = self.trajectory_generator.get_mp_trajs(get_pos=True, get_vel=True)
# TODO: is this correct for replanning? Do we need to adjust anything here?
self.trajectory_generator.set_duration(None if self.sequencing else self.duration, np.array([self.dt]))
traj_dict = self.trajectory_generator.get_trajs(get_pos=True, get_vel=True)
trajectory_tensor, velocity_tensor = traj_dict['pos'], traj_dict['vel']
trajectory = trajectory_tensor.numpy()
velocity = velocity_tensor.numpy()
return get_numpy(trajectory_tensor), get_numpy(velocity_tensor)
# TODO: Do we need this or does mp_pytorch have this?
if self.post_traj_steps > 0:
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.trajectory_generator.num_dof))])
return trajectory, velocity
def get_mp_action_space(self):
def get_traj_gen_action_space(self):
"""This function can be used to set up an individual space for the parameters of the trajectory_generator."""
min_action_bounds, max_action_bounds = self.trajectory_generator.get_param_bounds()
mp_action_space = gym.spaces.Box(low=min_action_bounds.numpy(), high=max_action_bounds.numpy(),
@ -108,22 +92,17 @@ class BlackBoxWrapper(gym.ObservationWrapper, ABC):
Only needs to be overwritten if the action space needs to be modified.
"""
try:
return self.mp_action_space
return self.traj_gen_action_space
except AttributeError:
return self.get_mp_action_space()
return self.get_traj_gen_action_space()
def step(self, action: np.ndarray):
""" This function generates a trajectory based on a MP and then does the usual loop over reset and step"""
# TODO: Think about sequencing
# TODO: Reward Function rather here?
# agent to learn when to release the ball
mp_params, env_spec_params = self._episode_callback(action)
trajectory, velocity = self.get_trajectory(mp_params)
# TODO
# self.time_steps = np.linspace(0, learned_duration, self.traj_steps)
# self.trajectory_generator.set_mp_times(self.time_steps)
trajectory_length = len(trajectory)
rewards = np.zeros(shape=(trajectory_length,))
if self.verbose >= 2:
@ -152,13 +131,15 @@ class BlackBoxWrapper(gym.ObservationWrapper, ABC):
elems[t] = v
infos[k] = elems
if self.render_mode is not None:
self.render(mode=self.render_mode, **self.render_kwargs)
if self.render_kwargs:
self.render(**self.render_kwargs)
if done or self.env.do_replanning(self.current_pos, self.current_vel, obs, c_action, t + past_steps):
if done or self.env.do_replanning(self.current_pos, self.current_vel, obs, c_action,
t + 1 + self.current_traj_steps):
break
infos.update({k: v[:t + 1] for k, v in infos.items()})
self.current_traj_steps += t + 1
if self.verbose >= 2:
infos['trajectory'] = trajectory
@ -168,24 +149,17 @@ class BlackBoxWrapper(gym.ObservationWrapper, ABC):
infos['trajectory_length'] = t + 1
trajectory_return = self.reward_aggregation(rewards[:t + 1])
return self.get_observation_from_step(obs), trajectory_return, done, infos
return obs, trajectory_return, done, infos
def reset(self):
return self.get_observation_from_step(self.env.reset())
def render(self, mode='human', **kwargs):
def render(self, **kwargs):
"""Only set render options here, such that they can be used during the rollout.
This only needs to be called once"""
self.render_mode = mode
self.render_kwargs = kwargs
# self.env.render(mode=self.render_mode, **self.render_kwargs)
self.env.render(mode=self.render_mode)
self.env.render(**kwargs)
def get_observation_from_step(self, observation: np.ndarray) -> np.ndarray:
return observation[self.active_obs]
def seed(self, seed=None):
self.env.seed(seed)
def reset(self, **kwargs):
self.current_traj_steps = 0
def plot_trajs(self, des_trajs, des_vels):
import matplotlib.pyplot as plt

View File

@ -1,4 +1,5 @@
import numpy as np
import torch as ch
def angle_normalize(x, type="deg"):
@ -19,3 +20,7 @@ def angle_normalize(x, type="deg"):
two_pi = 2 * np.pi
return x - two_pi * np.floor((x + np.pi) / two_pi)
def get_numpy(x: ch.Tensor):
return x.detach().cpu().numpy()