diff --git a/alr_envs/__init__.py b/alr_envs/__init__.py index 01e75ef..8e46fa9 100644 --- a/alr_envs/__init__.py +++ b/alr_envs/__init__.py @@ -129,6 +129,25 @@ register( } ) +register( + id='EpisodicSimpleReacher-v0', + entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv', + max_episode_steps=200, + kwargs={ + "n_links": 2, + } +) + +register( + id='EpisodicSimpleReacher-v1', + entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv', + max_episode_steps=200, + kwargs={ + "n_links": 2, + "random_start": False + } +) + register( id='LongSimpleReacher-v0', entry_point='alr_envs.classic_control:SimpleReacherEnv', @@ -186,7 +205,7 @@ register( entry_point='alr_envs.utils.make_env_helpers:make_dmp_env', # max_episode_steps=1, kwargs={ - "name": "alr_envs:SimpleReacher-v0", + "name": "alr_envs:EpisodicSimpleReacher-v0", "num_dof": 2, "num_basis": 5, "duration": 2, @@ -202,7 +221,7 @@ register( entry_point='alr_envs.utils.make_env_helpers:make_dmp_env', # max_episode_steps=1, kwargs={ - "name": "alr_envs:SimpleReacher-v1", + "name": "alr_envs:EpisodicSimpleReacher-v1", "num_dof": 2, "num_basis": 5, "duration": 2, diff --git a/alr_envs/classic_control/__init__.py b/alr_envs/classic_control/__init__.py index 8d31d19..8087136 100644 --- a/alr_envs/classic_control/__init__.py +++ b/alr_envs/classic_control/__init__.py @@ -1,3 +1,4 @@ from alr_envs.classic_control.simple_reacher import SimpleReacherEnv +from alr_envs.classic_control.episodic_simple_reacher import EpisodicSimpleReacherEnv from alr_envs.classic_control.viapoint_reacher import ViaPointReacher from alr_envs.classic_control.hole_reacher import HoleReacher diff --git a/alr_envs/classic_control/episodic_simple_reacher.py b/alr_envs/classic_control/episodic_simple_reacher.py new file mode 100644 index 0000000..b02efe8 --- /dev/null +++ b/alr_envs/classic_control/episodic_simple_reacher.py @@ -0,0 +1,46 @@ +from alr_envs.classic_control.simple_reacher import SimpleReacherEnv +from gym import spaces +import numpy as np + + +class EpisodicSimpleReacherEnv(SimpleReacherEnv): + def __init__(self, n_links, random_start=True): + super(EpisodicSimpleReacherEnv, self).__init__(n_links, random_start) + + # self._goal_pos = None + + if random_start: + state_bound = np.hstack([ + [np.pi] * self.n_links, # cos + [np.pi] * self.n_links, # sin + [np.inf] * self.n_links, # velocity + ]) + else: + state_bound = np.empty(0, ) + + state_bound = np.hstack([ + state_bound, + [np.inf] * 2, # x-y coordinates of goal + ]) + + self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape) + + @property + def start_pos(self): + return self._start_pos + + # @property + # def goal_pos(self): + # return self._goal_pos + + def _get_obs(self): + if self.random_start: + theta = self._joint_angle + return np.hstack([ + np.cos(theta), + np.sin(theta), + self._angle_velocity, + self._goal, + ]) + else: + return self._goal diff --git a/alr_envs/classic_control/simple_reacher.py b/alr_envs/classic_control/simple_reacher.py index 8d552af..7ca4ead 100644 --- a/alr_envs/classic_control/simple_reacher.py +++ b/alr_envs/classic_control/simple_reacher.py @@ -26,7 +26,7 @@ class SimpleReacherEnv(gym.Env): self.random_start = random_start - self._goal_pos = None + self._goal = None self._joints = None self._joint_angle = None @@ -53,10 +53,6 @@ class SimpleReacherEnv(gym.Env): self._steps = 0 self.seed() - @property - def start_pos(self): - return self._start_pos - def step(self, action: np.ndarray): # action = self._add_action_noise(action) @@ -91,8 +87,7 @@ class SimpleReacherEnv(gym.Env): np.cos(theta), np.sin(theta), self._angle_velocity, - self.end_effector - self._goal_pos, - self._goal_pos, + self.end_effector - self._goal, self._steps ]) @@ -107,7 +102,7 @@ class SimpleReacherEnv(gym.Env): self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0) def _get_reward(self, action: np.ndarray): - diff = self.end_effector - self._goal_pos + diff = self.end_effector - self._goal reward_dist = 0 # TODO: Is this the best option @@ -135,7 +130,7 @@ class SimpleReacherEnv(gym.Env): self._update_joints() self._steps = 0 - self._goal_pos = self._get_random_goal() + self._goal = self._get_random_goal() return self._get_obs().copy() def _get_random_goal(self): @@ -160,13 +155,13 @@ class SimpleReacherEnv(gym.Env): plt.figure(self.fig.number) plt.cla() - plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal_pos}") + plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}") # Arm plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k') # goal - goal_pos = self._goal_pos.T + goal_pos = self._goal.T plt.plot(goal_pos[0], goal_pos[1], 'gx') # distance between end effector and goal plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--') diff --git a/alr_envs/utils/mp_env_async_sampler.py b/alr_envs/utils/mp_env_async_sampler.py index b7c9c23..59cf594 100644 --- a/alr_envs/utils/mp_env_async_sampler.py +++ b/alr_envs/utils/mp_env_async_sampler.py @@ -81,12 +81,11 @@ class AlrContextualMpEnvSampler: repeat = int(np.ceil(n_samples / self.env.num_envs)) vals = defaultdict(list) for i in range(repeat): - obs = self.env.reset() + new_contexts = self.env.reset() - new_contexts = obs[-2] new_samples = dist.sample(new_contexts) - obs, reward, done, info = self.env.step(p) + obs, reward, done, info = self.env.step(new_samples) vals['obs'].append(obs) vals['reward'].append(reward) vals['done'].append(done) diff --git a/alr_envs/utils/wrapper/dmp_wrapper.py b/alr_envs/utils/wrapper/dmp_wrapper.py index 283b845..2a198db 100644 --- a/alr_envs/utils/wrapper/dmp_wrapper.py +++ b/alr_envs/utils/wrapper/dmp_wrapper.py @@ -9,8 +9,10 @@ from alr_envs.utils.wrapper.mp_wrapper import MPWrapper class DmpWrapper(MPWrapper): - def __init__(self, env: gym.Env, num_dof: int, num_basis: int, start_pos: np.ndarray = None, - final_pos: np.ndarray = None, duration: int = 1, alpha_phase: float = 2., dt: float = None, + def __init__(self, env: gym.Env, num_dof: int, num_basis: int, + # start_pos: np.ndarray = None, + # final_pos: np.ndarray = None, + duration: int = 1, alpha_phase: float = 2., dt: float = None, learn_goal: bool = False, return_to_start: bool = False, post_traj_time: float = 0., weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3., policy_type: str = None, render_mode: str = None): @@ -35,26 +37,30 @@ class DmpWrapper(MPWrapper): self.learn_goal = learn_goal dt = env.dt if hasattr(env, "dt") else dt assert dt is not None - start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None + # start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None # TODO: assert start_pos is not None # start_pos will be set in initialize, do we need this here? - if learn_goal: + # if learn_goal: # final_pos = np.zeros_like(start_pos) # arbitrary, will be learned - final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned - else: - final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None - assert final_pos is not None + # final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned + # else: + # final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None + # assert final_pos is not None self.t = np.linspace(0, duration, int(duration / dt)) self.goal_scale = goal_scale super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale, render_mode, - num_basis=num_basis, start_pos=start_pos, final_pos=final_pos, alpha_phase=alpha_phase, + num_basis=num_basis, + # start_pos=start_pos, final_pos=final_pos, + alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor) action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0))) self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32) - def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, start_pos: np.ndarray = None, - final_pos: np.ndarray = None, alpha_phase: float = 2., bandwidth_factor: float = 3.): + def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, + # start_pos: np.ndarray = None, + # final_pos: np.ndarray = None, + alpha_phase: float = 2., bandwidth_factor: float = 3.): phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration) basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis, @@ -66,12 +72,12 @@ class DmpWrapper(MPWrapper): # dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) # in a contextual environment, the start_pos may be not fixed, set in mp_rollout? # TODO: Should we set start_pos in init at all? It's only used after calling rollout anyway... - dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof)) + # dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof)) - weights = np.zeros((num_basis, num_dof)) - goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos + # weights = np.zeros((num_basis, num_dof)) + # goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos - dmp.set_weights(weights, goal_pos) + # dmp.set_weights(weights, goal_pos) return dmp def goal_and_weights(self, params): @@ -83,7 +89,7 @@ class DmpWrapper(MPWrapper): params = params[:, :-self.mp.num_dimensions] # [1,num_dof] # weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof]) else: - goal_pos = self.mp.dmp_goal_pos.flatten() + goal_pos = self.env.goal_pos # self.mp.dmp_goal_pos.flatten() assert goal_pos is not None # weight_matrix = np.reshape(params, [self.num_basis, self.num_dof]) @@ -91,8 +97,8 @@ class DmpWrapper(MPWrapper): return goal_pos * self.goal_scale, weight_matrix * self.weights_scale def mp_rollout(self, action): - if self.mp.start_pos is None: - self.mp.start_pos = self.env.start_pos + # if self.mp.start_pos is None: + self.mp.dmp_start_pos = self.env.init_qpos # start_pos goal_pos, weight_matrix = self.goal_and_weights(action) self.mp.set_weights(weight_matrix, goal_pos) return self.mp.reference_trajectory(self.t) diff --git a/alr_envs/utils/wrapper/mp_wrapper.py b/alr_envs/utils/wrapper/mp_wrapper.py index f60cc8c..adeba55 100644 --- a/alr_envs/utils/wrapper/mp_wrapper.py +++ b/alr_envs/utils/wrapper/mp_wrapper.py @@ -62,7 +62,8 @@ class MPWrapper(gym.Wrapper, ABC): self.env.configure(context) def reset(self): - return self.env.reset() + obs = self.env.reset() + return obs def step(self, action: np.ndarray): """ This function generates a trajectory based on a DMP and then does the usual loop over reset and step""" diff --git a/example.py b/example.py index 94da23c..2d32ad8 100644 --- a/example.py +++ b/example.py @@ -83,5 +83,6 @@ if __name__ == '__main__': # example_mujoco() # example_dmp() # example_async() - env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1) + # env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1) + env = gym.make("alr_envs:SimpleReacherDMP-v1") print() \ No newline at end of file