Merge branch 'master' into reacher_env_cleanup
# Conflicts: # alr_envs/examples/examples_general.py
This commit is contained in:
commit
bb65584429
245
README.md
245
README.md
@ -1,87 +1,212 @@
|
|||||||
## ALR Environments
|
## ALR Robotics Control Environments
|
||||||
|
|
||||||
This repository collects custom Robotics environments not included in benchmark suites like OpenAI gym, rllab, etc.
|
|
||||||
Creating a custom (Mujoco) gym environment can be done according to [this guide](https://github.com/openai/gym/blob/master/docs/creating-environments.md).
|
|
||||||
For stochastic search problems with gym interface use the `Rosenbrock-v0` reference implementation.
|
|
||||||
We also support to solve environments with DMPs. When adding new DMP tasks check the `ViaPointReacherDMP-v0` reference implementation.
|
|
||||||
When simply using the tasks, you can also leverage the wrapper class `DmpWrapper` to turn normal gym environments in to DMP tasks.
|
|
||||||
|
|
||||||
## Environments
|
This project offers a large verity of reinforcement learning environments under a unifying interface base on OpenAI gym.
|
||||||
Currently we have the following environments:
|
Besides, some custom environments we also provide support for the benchmark suites
|
||||||
|
[OpenAI gym](https://gym.openai.com/),
|
||||||
|
[DeepMind Control](https://deepmind.com/research/publications/2020/dm-control-Software-and-Tasks-for-Continuous-Control)
|
||||||
|
(DMC), and [Metaworld](https://meta-world.github.io/). Custom (Mujoco) gym environment can be created according
|
||||||
|
to [this guide](https://github.com/openai/gym/blob/master/docs/creating-environments.md). Unlike existing libraries, we
|
||||||
|
further support to control agents with Dynamic Movement Primitives (DMPs) and Probabilistic Movement Primitives (DetPMP,
|
||||||
|
we only consider the mean usually).
|
||||||
|
|
||||||
### Mujoco
|
## Motion Primitive Environments (Episodic environments)
|
||||||
|
|
||||||
|Name| Description|Horizon|Action Dimension|Observation Dimension
|
Unlike step-based environments, motion primitive (MP) environments are closer related to stochastic search, black box
|
||||||
|---|---|---|---|---|
|
optimization and methods that often used in robotics. MP environments are trajectory-based and always execute a full
|
||||||
|`ALRReacher-v0`|Modified (5 links) Mujoco gym's `Reacher-v2` (2 links)| 200 | 5 | 21
|
trajectory, which is generated by a Dynamic Motion Primitive (DMP) or a Probabilistic Motion Primitive (DetPMP). The
|
||||||
|`ALRReacherSparse-v0`|Same as `ALRReacher-v0`, but the distance penalty is only provided in the last time step.| 200 | 5 | 21
|
generated trajectory is translated into individual step-wise actions by a controller. The exact choice of controller is,
|
||||||
|`ALRReacherSparseBalanced-v0`|Same as `ALRReacherSparse-v0`, but the end-effector has to remain upright.| 200 | 5 | 21
|
however, dependent on the type of environment. We currently support position, velocity, and PD-Controllers for position,
|
||||||
|`ALRLongReacher-v0`|Modified (7 links) Mujoco gym's `Reacher-v2` (2 links)| 200 | 7 | 27
|
velocity and torque control, respectively. The goal of all MP environments is still to learn a policy. Yet, an action
|
||||||
|`ALRLongReacherSparse-v0`|Same as `ALRLongReacher-v0`, but the distance penalty is only provided in the last time step.| 200 | 7 | 27
|
represents the parametrization of the motion primitives to generate a suitable trajectory. Additionally, in this
|
||||||
|`ALRLongReacherSparseBalanced-v0`|Same as `ALRLongReacherSparse-v0`, but the end-effector has to remain upright.| 200 | 7 | 27
|
framework we support the above setting for the contextual setting, for which we expose all changing substates of the
|
||||||
|`ALRBallInACupSimple-v0`| Ball-in-a-cup task where a robot needs to catch a ball attached to a cup at its end-effector. | 4000 | 3 | wip
|
task as a single observation in the beginning. This requires to predict a new action/MP parametrization for each
|
||||||
|`ALRBallInACup-v0`| Ball-in-a-cup task where a robot needs to catch a ball attached to a cup at its end-effector | 4000 | 7 | wip
|
trajectory. All environments provide the next to the cumulative episode reward also all collected information from each
|
||||||
|`ALRBallInACupGoal-v0`| Similiar to `ALRBallInACupSimple-v0` but the ball needs to be caught at a specified goal position | 4000 | 7 | wip
|
step as part of the info dictionary. This information should, however, mainly be used for debugging and logging.
|
||||||
|
|
||||||
### Classic Control
|
|
||||||
|
|
||||||
|Name| Description|Horizon|Action Dimension|Observation Dimension
|
|Key| Description|
|
||||||
|---|---|---|---|---|
|
|---|---|
|
||||||
|`SimpleReacher-v0`| Simple reaching task (2 links) without any physics simulation. Provides no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions towards the end of the trajectory.| 200 | 2 | 9
|
`trajectory`| Generated trajectory from MP
|
||||||
|`LongSimpleReacher-v0`| Simple reaching task (5 links) without any physics simulation. Provides no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions towards the end of the trajectory.| 200 | 5 | 18
|
`step_actions`| Step-wise executed action based on controller output
|
||||||
|`ViaPointReacher-v0`| Simple reaching task leveraging a via point, which supports self collision detection. Provides a reward only at 100 and 199 for reaching the viapoint and goal point, respectively.| 200 | 5 | 18
|
`step_observations`| Step-wise intermediate observations
|
||||||
|`HoleReacher-v0`| 5 link reaching task where the end-effector needs to reach into a narrow hole without collding with itself or walls | 200 | 5 | 18
|
`step_rewards`| Step-wise rewards
|
||||||
|
`trajectory_length`| Total number of environment interactions
|
||||||
|
`other`| All other information from the underlying environment are returned as a list with length `trajectory_length` maintaining the original key. In case some information are not provided every time step, the missing values are filled with `None`.
|
||||||
|
|
||||||
### DMP Environments
|
## Installation
|
||||||
These environments are closer to stochastic search. They always execute a full trajectory, which is computed by a DMP and executed by a controller, e.g. a PD controller.
|
|
||||||
The goal is to learn the parameters of this DMP to generate a suitable trajectory.
|
|
||||||
All environments provide the full episode reward and additional information about early terminations, e.g. due to collisions.
|
|
||||||
|
|
||||||
|Name| Description|Horizon|Action Dimension|Context Dimension
|
1. Clone the repository
|
||||||
|---|---|---|---|---|
|
|
||||||
|`ViaPointReacherDMP-v0`| A DMP provides a trajectory for the `ViaPointReacher-v0` task. | 200 | 25
|
|
||||||
|`HoleReacherFixedGoalDMP-v0`| A DMP provides a trajectory for the `HoleReacher-v0` task with a fixed goal attractor. | 200 | 25
|
|
||||||
|`HoleReacherDMP-v0`| A DMP provides a trajectory for the `HoleReacher-v0` task. The goal attractor needs to be learned. | 200 | 30
|
|
||||||
|`ALRBallInACupSimpleDMP-v0`| A DMP provides a trajectory for the `ALRBallInACupSimple-v0` task where only 3 joints are actuated. | 4000 | 15
|
|
||||||
|`ALRBallInACupDMP-v0`| A DMP provides a trajectory for the `ALRBallInACup-v0` task. | 4000 | 35
|
|
||||||
|`ALRBallInACupGoalDMP-v0`| A DMP provides a trajectory for the `ALRBallInACupGoal-v0` task. | 4000 | 35 | 3
|
|
||||||
|
|
||||||
[//]: |`HoleReacherDetPMP-v0`|
|
|
||||||
|
|
||||||
### Stochastic Search
|
|
||||||
|Name| Description|Horizon|Action Dimension|Observation Dimension
|
|
||||||
|---|---|---|---|---|
|
|
||||||
|`Rosenbrock{dim}-v0`| Gym interface for Rosenbrock function. `{dim}` is one of 5, 10, 25, 50 or 100. | 1 | `{dim}` | 0
|
|
||||||
|
|
||||||
|
|
||||||
## Install
|
|
||||||
1. Clone the repository
|
|
||||||
```bash
|
```bash
|
||||||
git clone git@github.com:ALRhub/alr_envs.git
|
git clone git@github.com:ALRhub/alr_envs.git
|
||||||
```
|
```
|
||||||
2. Go to the folder
|
|
||||||
|
2. Go to the folder
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cd alr_envs
|
cd alr_envs
|
||||||
```
|
```
|
||||||
3. Install with
|
|
||||||
|
3. Install with
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install -e .
|
pip install -e .
|
||||||
```
|
```
|
||||||
4. Use (see [example.py](alr_envs/examples/examples_general.py)):
|
|
||||||
```python
|
|
||||||
import gym
|
|
||||||
|
|
||||||
env = gym.make('alr_envs:SimpleReacher-v0')
|
## Using the framework
|
||||||
|
|
||||||
|
We prepared [multiple examples](alr_envs/examples/), please have a look there for more specific examples.
|
||||||
|
|
||||||
|
### Step-wise environments
|
||||||
|
|
||||||
|
```python
|
||||||
|
import alr_envs
|
||||||
|
|
||||||
|
env = alr_envs.make('HoleReacher-v0', seed=1)
|
||||||
state = env.reset()
|
state = env.reset()
|
||||||
|
|
||||||
for i in range(10000):
|
for i in range(1000):
|
||||||
state, reward, done, info = env.step(env.action_space.sample())
|
state, reward, done, info = env.step(env.action_space.sample())
|
||||||
if i % 5 == 0:
|
if i % 5 == 0:
|
||||||
env.render()
|
env.render()
|
||||||
|
|
||||||
if done:
|
if done:
|
||||||
state = env.reset()
|
state = env.reset()
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
For an example using a DMP wrapped env and asynchronous sampling look at [mp_env_async_sampler.py](./alr_envs/utils/mp_env_async_sampler.py)
|
For Deepmind control tasks we expect the `env_id` to be specified as `domain_name-task_name` or for manipulation tasks
|
||||||
|
as `manipulation-environment_name`. All other environments can be created based on their original name.
|
||||||
|
|
||||||
|
Existing MP tasks can be created the same way as above. Just keep in mind, calling `step()` always executs a full
|
||||||
|
trajectory.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import alr_envs
|
||||||
|
|
||||||
|
env = alr_envs.make('HoleReacherDetPMP-v0', seed=1)
|
||||||
|
# render() can be called once in the beginning with all necessary arguments. To turn it of again just call render(None).
|
||||||
|
env.render()
|
||||||
|
|
||||||
|
state = env.reset()
|
||||||
|
|
||||||
|
for i in range(5):
|
||||||
|
state, reward, done, info = env.step(env.action_space.sample())
|
||||||
|
|
||||||
|
# Not really necessary as the environments resets itself after each trajectory anyway.
|
||||||
|
state = env.reset()
|
||||||
|
```
|
||||||
|
|
||||||
|
To show all available environments, we provide some additional convenience. Each value will return a dictionary with two
|
||||||
|
keys `DMP` and `DetPMP` that store a list of available environment names.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import alr_envs
|
||||||
|
|
||||||
|
print("Custom MP tasks:")
|
||||||
|
print(alr_envs.ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS)
|
||||||
|
|
||||||
|
print("OpenAI Gym MP tasks:")
|
||||||
|
print(alr_envs.ALL_GYM_MOTION_PRIMITIVE_ENVIRONMENTS)
|
||||||
|
|
||||||
|
print("Deepmind Control MP tasks:")
|
||||||
|
print(alr_envs.ALL_DEEPMIND_MOTION_PRIMITIVE_ENVIRONMENTS)
|
||||||
|
|
||||||
|
print("MetaWorld MP tasks:")
|
||||||
|
print(alr_envs.ALL_METAWORLD_MOTION_PRIMITIVE_ENVIRONMENTS)
|
||||||
|
```
|
||||||
|
|
||||||
|
### How to create a new MP task
|
||||||
|
|
||||||
|
In case a required task is not supported yet in the MP framework, it can be created relatively easy. For the task at
|
||||||
|
hand, the following interface needs to be implemented.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
from mp_env_api import MPEnvWrapper
|
||||||
|
|
||||||
|
|
||||||
|
class MPWrapper(MPEnvWrapper):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def active_obs(self):
|
||||||
|
"""
|
||||||
|
Returns boolean mask for each substate in the full observation.
|
||||||
|
It determines whether the observation is returned for the contextual case or not.
|
||||||
|
This effectively allows to filter unwanted or unnecessary observations from the full step-based case.
|
||||||
|
E.g. Velocities starting at 0 are only changing after the first action. Given we only receive the first
|
||||||
|
observation, the velocities are not necessary in the observation for the MP task.
|
||||||
|
"""
|
||||||
|
return np.ones(self.observation_space.shape, dtype=bool)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def current_vel(self):
|
||||||
|
"""
|
||||||
|
Returns the current velocity of the action/control dimension.
|
||||||
|
The dimensionality has to match the action/control dimension.
|
||||||
|
This is not required when exclusively using position control,
|
||||||
|
it should, however, be implemented regardless.
|
||||||
|
E.g. The joint velocities that are directly or indirectly controlled by the action.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def current_pos(self):
|
||||||
|
"""
|
||||||
|
Returns the current position of the action/control dimension.
|
||||||
|
The dimensionality has to match the action/control dimension.
|
||||||
|
This is not required when exclusively using velocity control,
|
||||||
|
it should, however, be implemented regardless.
|
||||||
|
E.g. The joint positions that are directly or indirectly controlled by the action.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def goal_pos(self):
|
||||||
|
"""
|
||||||
|
Returns a predefined final position of the action/control dimension.
|
||||||
|
This is only required for the DMP and is most of the time learned instead.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dt(self):
|
||||||
|
"""
|
||||||
|
Returns the time between two simulated steps of the environment
|
||||||
|
"""
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
If you created a new task wrapper, feel free to open a PR, so we can integrate it for others to use as well.
|
||||||
|
Without the integration the task can still be used. A rough outline can be shown here, for more details we recommend
|
||||||
|
having a look at the [examples](alr_envs/examples/).
|
||||||
|
|
||||||
|
```python
|
||||||
|
import alr_envs
|
||||||
|
|
||||||
|
# Base environment name, according to structure of above example
|
||||||
|
base_env_id = "ball_in_cup-catch"
|
||||||
|
|
||||||
|
# Replace this wrapper with the custom wrapper for your environment by inheriting from the MPEnvWrapper.
|
||||||
|
# You can also add other gym.Wrappers in case they are needed,
|
||||||
|
# e.g. gym.wrappers.FlattenObservation for dict observations
|
||||||
|
wrappers = [alr_envs.dmc.suite.ball_in_cup.MPWrapper]
|
||||||
|
mp_kwargs = {...}
|
||||||
|
kwargs = {...}
|
||||||
|
env = alr_envs.make_dmp_env(base_env_id, wrappers=wrappers, seed=1, mp_kwargs=mp_kwargs, **kwargs)
|
||||||
|
# OR for a deterministic ProMP (other mp_kwargs are required):
|
||||||
|
# env = alr_envs.make_detpmp_env(base_env, wrappers=wrappers, seed=seed, mp_kwargs=mp_args)
|
||||||
|
|
||||||
|
rewards = 0
|
||||||
|
obs = env.reset()
|
||||||
|
|
||||||
|
# number of samples/full trajectories (multiple environment steps)
|
||||||
|
for i in range(5):
|
||||||
|
ac = env.action_space.sample()
|
||||||
|
obs, reward, done, info = env.step(ac)
|
||||||
|
rewards += reward
|
||||||
|
|
||||||
|
if done:
|
||||||
|
print(base_env_id, rewards)
|
||||||
|
rewards = 0
|
||||||
|
obs = env.reset()
|
||||||
|
```
|
||||||
|
@ -1,579 +1,15 @@
|
|||||||
import numpy as np
|
from alr_envs import dmc, meta, open_ai
|
||||||
from gym.envs.registration import register
|
from alr_envs.utils.make_env_helpers import make, make_detpmp_env, make_dmp_env, make_rank
|
||||||
|
from alr_envs.utils import make_dmc
|
||||||
|
|
||||||
from alr_envs.classic_control.hole_reacher.hole_reacher_mp_wrapper import HoleReacherMPWrapper
|
# Convenience function for all MP environments
|
||||||
from alr_envs.classic_control.simple_reacher.simple_reacher_mp_wrapper import SimpleReacherMPWrapper
|
from .alr import ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS
|
||||||
from alr_envs.classic_control.viapoint_reacher.viapoint_reacher_mp_wrapper import ViaPointReacherMPWrapper
|
from .dmc import ALL_DEEPMIND_MOTION_PRIMITIVE_ENVIRONMENTS
|
||||||
from alr_envs.dmc.ball_in_cup.ball_in_the_cup_mp_wrapper import DMCBallInCupMPWrapper
|
from .meta import ALL_METAWORLD_MOTION_PRIMITIVE_ENVIRONMENTS
|
||||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_mp_wrapper import BallInACupMPWrapper
|
from .open_ai import ALL_GYM_MOTION_PRIMITIVE_ENVIRONMENTS
|
||||||
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
|
||||||
|
|
||||||
# Mujoco
|
ALL_MOTION_PRIMITIVE_ENVIRONMENTS = {
|
||||||
|
key: value + ALL_DEEPMIND_MOTION_PRIMITIVE_ENVIRONMENTS[key] +
|
||||||
## Reacher
|
ALL_GYM_MOTION_PRIMITIVE_ENVIRONMENTS[key] +
|
||||||
register(
|
ALL_METAWORLD_MOTION_PRIMITIVE_ENVIRONMENTS[key]
|
||||||
id='ALRReacher-v0',
|
for key, value in ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS.items()}
|
||||||
entry_point='alr_envs.mujoco:ALRReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"steps_before_reward": 0,
|
|
||||||
"n_links": 5,
|
|
||||||
"balance": False,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRReacherSparse-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"steps_before_reward": 200,
|
|
||||||
"n_links": 5,
|
|
||||||
"balance": False,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRReacherSparseBalanced-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"steps_before_reward": 200,
|
|
||||||
"n_links": 5,
|
|
||||||
"balance": True,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRLongReacher-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"steps_before_reward": 0,
|
|
||||||
"n_links": 7,
|
|
||||||
"balance": False,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRLongReacherSparse-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"steps_before_reward": 200,
|
|
||||||
"n_links": 7,
|
|
||||||
"balance": False,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRLongReacherSparseBalanced-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"steps_before_reward": 200,
|
|
||||||
"n_links": 7,
|
|
||||||
"balance": True,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
## Balancing Reacher
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='Balancing-v0',
|
|
||||||
entry_point='alr_envs.mujoco:BalancingEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 5,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupSimple-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
|
|
||||||
max_episode_steps=4000,
|
|
||||||
kwargs={
|
|
||||||
"simplified": True,
|
|
||||||
"reward_type": "no_context",
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupPDSimple-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRBallInACupPDEnv',
|
|
||||||
max_episode_steps=4000,
|
|
||||||
kwargs={
|
|
||||||
"simplified": True,
|
|
||||||
"reward_type": "no_context"
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupPD-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRBallInACupPDEnv',
|
|
||||||
max_episode_steps=4000,
|
|
||||||
kwargs={
|
|
||||||
"simplified": False,
|
|
||||||
"reward_type": "no_context"
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACup-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
|
|
||||||
max_episode_steps=4000,
|
|
||||||
kwargs={
|
|
||||||
"reward_type": "no_context"
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupGoal-v0',
|
|
||||||
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
|
|
||||||
max_episode_steps=4000,
|
|
||||||
kwargs={
|
|
||||||
"reward_type": "contextual_goal"
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
# Classic control
|
|
||||||
|
|
||||||
## Simple Reacher
|
|
||||||
register(
|
|
||||||
id='SimpleReacher-v0',
|
|
||||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 2,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='SimpleReacher-v1',
|
|
||||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 2,
|
|
||||||
"random_start": False
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='LongSimpleReacher-v0',
|
|
||||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 5,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='LongSimpleReacher-v1',
|
|
||||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 5,
|
|
||||||
"random_start": False
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
## Viapoint Reacher
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ViaPointReacher-v0',
|
|
||||||
entry_point='alr_envs.classic_control:ViaPointReacher',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 5,
|
|
||||||
"allow_self_collision": False,
|
|
||||||
"collision_penalty": 1000
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
## Hole Reacher
|
|
||||||
register(
|
|
||||||
id='HoleReacher-v0',
|
|
||||||
entry_point='alr_envs.classic_control:HoleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 5,
|
|
||||||
"random_start": True,
|
|
||||||
"allow_self_collision": False,
|
|
||||||
"allow_wall_collision": False,
|
|
||||||
"hole_width": None,
|
|
||||||
"hole_depth": 1,
|
|
||||||
"hole_x": None,
|
|
||||||
"collision_penalty": 100,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='HoleReacher-v1',
|
|
||||||
entry_point='alr_envs.classic_control:HoleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 5,
|
|
||||||
"random_start": False,
|
|
||||||
"allow_self_collision": False,
|
|
||||||
"allow_wall_collision": False,
|
|
||||||
"hole_width": None,
|
|
||||||
"hole_depth": 1,
|
|
||||||
"hole_x": None,
|
|
||||||
"collision_penalty": 100,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='HoleReacher-v2',
|
|
||||||
entry_point='alr_envs.classic_control:HoleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 5,
|
|
||||||
"random_start": False,
|
|
||||||
"allow_self_collision": False,
|
|
||||||
"allow_wall_collision": False,
|
|
||||||
"hole_width": 0.25,
|
|
||||||
"hole_depth": 1,
|
|
||||||
"hole_x": 2,
|
|
||||||
"collision_penalty": 100,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
# MP environments
|
|
||||||
|
|
||||||
## Simple Reacher
|
|
||||||
versions = ["SimpleReacher-v0", "SimpleReacher-v1", "LongSimpleReacher-v0", "LongSimpleReacher-v1"]
|
|
||||||
for v in versions:
|
|
||||||
name = v.split("-")
|
|
||||||
register(
|
|
||||||
id=f'{name[0]}DMP-{name[1]}',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
|
||||||
# max_episode_steps=1,
|
|
||||||
kwargs={
|
|
||||||
"name": f"alr_envs:{v}",
|
|
||||||
"wrappers": [SimpleReacherMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 2 if "long" not in v.lower() else 5,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 2,
|
|
||||||
"alpha_phase": 2,
|
|
||||||
"learn_goal": True,
|
|
||||||
"policy_type": "velocity",
|
|
||||||
"weights_scale": 50,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ViaPointReacherDMP-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
|
||||||
# max_episode_steps=1,
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:ViaPointReacher-v0",
|
|
||||||
"wrappers": [ViaPointReacherMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 5,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 2,
|
|
||||||
"learn_goal": True,
|
|
||||||
"alpha_phase": 2,
|
|
||||||
"policy_type": "velocity",
|
|
||||||
"weights_scale": 50,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
## Hole Reacher
|
|
||||||
versions = ["v0", "v1", "v2"]
|
|
||||||
for v in versions:
|
|
||||||
register(
|
|
||||||
id=f'HoleReacherDMP-{v}',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
|
||||||
# max_episode_steps=1,
|
|
||||||
kwargs={
|
|
||||||
"name": f"alr_envs:HoleReacher-{v}",
|
|
||||||
"wrappers": [HoleReacherMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 5,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 2,
|
|
||||||
"learn_goal": True,
|
|
||||||
"alpha_phase": 2,
|
|
||||||
"bandwidth_factor": 2,
|
|
||||||
"policy_type": "velocity",
|
|
||||||
"weights_scale": 50,
|
|
||||||
"goal_scale": 0.1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id=f'HoleReacherDetPMP-{v}',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
|
||||||
kwargs={
|
|
||||||
"name": f"alr_envs:HoleReacher-{v}",
|
|
||||||
"wrappers": [HoleReacherMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 5,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 2,
|
|
||||||
"width": 0.025,
|
|
||||||
"policy_type": "velocity",
|
|
||||||
"weights_scale": 0.2,
|
|
||||||
"zero_start": True
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
# TODO: properly add final_pos
|
|
||||||
register(
|
|
||||||
id='HoleReacherFixedGoalDMP-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
|
||||||
# max_episode_steps=1,
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:HoleReacher-v0",
|
|
||||||
"wrappers": [HoleReacherMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 5,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 2,
|
|
||||||
"learn_goal": False,
|
|
||||||
"alpha_phase": 2,
|
|
||||||
"policy_type": "velocity",
|
|
||||||
"weights_scale": 50,
|
|
||||||
"goal_scale": 0.1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
## Ball in Cup
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupSimpleDMP-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:ALRBallInACupSimple-v0",
|
|
||||||
"wrappers": [BallInACupMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 3,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 3.5,
|
|
||||||
"post_traj_time": 4.5,
|
|
||||||
"learn_goal": False,
|
|
||||||
"alpha_phase": 3,
|
|
||||||
"bandwidth_factor": 2.5,
|
|
||||||
"policy_type": "motor",
|
|
||||||
"weights_scale": 100,
|
|
||||||
"return_to_start": True,
|
|
||||||
"policy_kwargs": {
|
|
||||||
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
|
||||||
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupDMP-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:ALRBallInACup-v0",
|
|
||||||
"wrappers": [BallInACupMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 7,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 3.5,
|
|
||||||
"post_traj_time": 4.5,
|
|
||||||
"learn_goal": False,
|
|
||||||
"alpha_phase": 3,
|
|
||||||
"bandwidth_factor": 2.5,
|
|
||||||
"policy_type": "motor",
|
|
||||||
"weights_scale": 100,
|
|
||||||
"return_to_start": True,
|
|
||||||
"policy_kwargs": {
|
|
||||||
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
|
||||||
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupSimpleDetPMP-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:ALRBallInACupSimple-v0",
|
|
||||||
"wrappers": [BallInACupMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 3,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 3.5,
|
|
||||||
"post_traj_time": 4.5,
|
|
||||||
"width": 0.0035,
|
|
||||||
# "off": -0.05,
|
|
||||||
"policy_type": "motor",
|
|
||||||
"weights_scale": 0.2,
|
|
||||||
"zero_start": True,
|
|
||||||
"zero_goal": True,
|
|
||||||
"policy_kwargs": {
|
|
||||||
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
|
||||||
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupPDSimpleDetPMP-v0',
|
|
||||||
entry_point='alr_envs.mujoco.ball_in_a_cup.biac_pd:make_detpmp_env_helper',
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:ALRBallInACupPDSimple-v0",
|
|
||||||
"wrappers": [BallInACupMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 3,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 3.5,
|
|
||||||
"post_traj_time": 4.5,
|
|
||||||
"width": 0.0035,
|
|
||||||
# "off": -0.05,
|
|
||||||
"policy_type": "motor",
|
|
||||||
"weights_scale": 0.2,
|
|
||||||
"zero_start": True,
|
|
||||||
"zero_goal": True,
|
|
||||||
"policy_kwargs": {
|
|
||||||
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
|
||||||
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupPDDetPMP-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env',
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:ALRBallInACupPD-v0",
|
|
||||||
"num_dof": 7,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 3.5,
|
|
||||||
"post_traj_time": 4.5,
|
|
||||||
"width": 0.0035,
|
|
||||||
# "off": -0.05,
|
|
||||||
"policy_type": "motor",
|
|
||||||
"weights_scale": 0.2,
|
|
||||||
"zero_start": True,
|
|
||||||
"zero_goal": True,
|
|
||||||
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
|
||||||
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupDetPMP-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:ALRBallInACupSimple-v0",
|
|
||||||
"wrappers": [BallInACupMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 7,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 3.5,
|
|
||||||
"post_traj_time": 4.5,
|
|
||||||
"width": 0.0035,
|
|
||||||
"policy_type": "motor",
|
|
||||||
"weights_scale": 0.2,
|
|
||||||
"zero_start": True,
|
|
||||||
"zero_goal": True,
|
|
||||||
"policy_kwargs": {
|
|
||||||
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
|
||||||
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='ALRBallInACupGoalDMP-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_contextual_env',
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:ALRBallInACupGoal-v0",
|
|
||||||
"wrappers": [BallInACupMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 7,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 3.5,
|
|
||||||
"post_traj_time": 4.5,
|
|
||||||
"learn_goal": True,
|
|
||||||
"alpha_phase": 3,
|
|
||||||
"bandwidth_factor": 2.5,
|
|
||||||
"policy_type": "motor",
|
|
||||||
"weights_scale": 50,
|
|
||||||
"goal_scale": 0.1,
|
|
||||||
"policy_kwargs": {
|
|
||||||
"p_gains": np.array([4. / 3., 2.4, 2.5, 5. / 3., 2., 2., 1.25]),
|
|
||||||
"d_gains": np.array([0.0466, 0.12, 0.125, 0.04166, 0.06, 0.06, 0.025])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
## DMC
|
|
||||||
|
|
||||||
register(
|
|
||||||
id=f'dmc_ball_in_cup-catch_dmp-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
|
||||||
# max_episode_steps=1,
|
|
||||||
kwargs={
|
|
||||||
"name": f"ball_in_cup-catch",
|
|
||||||
"wrappers": [DMCBallInCupMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 2,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 20,
|
|
||||||
"learn_goal": True,
|
|
||||||
"alpha_phase": 2,
|
|
||||||
"bandwidth_factor": 2,
|
|
||||||
"policy_type": "motor",
|
|
||||||
"weights_scale": 50,
|
|
||||||
"goal_scale": 0.1,
|
|
||||||
"policy_kwargs": {
|
|
||||||
"p_gains": 0.2,
|
|
||||||
"d_gains": 0.05
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id=f'dmc_ball_in_cup-catch_detpmp-v0',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
|
||||||
kwargs={
|
|
||||||
"name": f"ball_in_cup-catch",
|
|
||||||
"wrappers": [DMCBallInCupMPWrapper],
|
|
||||||
"mp_kwargs": {
|
|
||||||
"num_dof": 2,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 20,
|
|
||||||
"width": 0.025,
|
|
||||||
"policy_type": "velocity",
|
|
||||||
"weights_scale": 0.2,
|
|
||||||
"zero_start": True,
|
|
||||||
"policy_kwargs": {
|
|
||||||
"p_gains": 0.2,
|
|
||||||
"d_gains": 0.05
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
# BBO functions
|
|
||||||
|
|
||||||
for dim in [5, 10, 25, 50, 100]:
|
|
||||||
register(
|
|
||||||
id=f'Rosenbrock{dim}-v0',
|
|
||||||
entry_point='alr_envs.stochastic_search:StochasticSearchEnv',
|
|
||||||
max_episode_steps=1,
|
|
||||||
kwargs={
|
|
||||||
"cost_f": Rosenbrock(dim),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
329
alr_envs/alr/__init__.py
Normal file
329
alr_envs/alr/__init__.py
Normal file
@ -0,0 +1,329 @@
|
|||||||
|
from gym import register
|
||||||
|
|
||||||
|
from . import classic_control, mujoco
|
||||||
|
from .classic_control.hole_reacher.hole_reacher import HoleReacherEnv
|
||||||
|
from .classic_control.simple_reacher.simple_reacher import SimpleReacherEnv
|
||||||
|
from .classic_control.viapoint_reacher.viapoint_reacher import ViaPointReacherEnv
|
||||||
|
from .mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
|
||||||
|
from .mujoco.ball_in_a_cup.biac_pd import ALRBallInACupPDEnv
|
||||||
|
from .mujoco.reacher.alr_reacher import ALRReacherEnv
|
||||||
|
from .mujoco.reacher.balancing import BalancingEnv
|
||||||
|
|
||||||
|
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS = {"DMP": [], "DetPMP": []}
|
||||||
|
|
||||||
|
# Classic Control
|
||||||
|
## Simple Reacher
|
||||||
|
register(
|
||||||
|
id='SimpleReacher-v0',
|
||||||
|
entry_point='alr_envs.alr.classic_control:SimpleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 2,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='SimpleReacher-v1',
|
||||||
|
entry_point='alr_envs.alr.classic_control:SimpleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 2,
|
||||||
|
"random_start": False
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='LongSimpleReacher-v0',
|
||||||
|
entry_point='alr_envs.alr.classic_control:SimpleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='LongSimpleReacher-v1',
|
||||||
|
entry_point='alr_envs.alr.classic_control:SimpleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
"random_start": False
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
## Viapoint Reacher
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='ViaPointReacher-v0',
|
||||||
|
entry_point='alr_envs.alr.classic_control:ViaPointReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
"allow_self_collision": False,
|
||||||
|
"collision_penalty": 1000
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
## Hole Reacher
|
||||||
|
register(
|
||||||
|
id='HoleReacher-v0',
|
||||||
|
entry_point='alr_envs.alr.classic_control:HoleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
"random_start": True,
|
||||||
|
"allow_self_collision": False,
|
||||||
|
"allow_wall_collision": False,
|
||||||
|
"hole_width": None,
|
||||||
|
"hole_depth": 1,
|
||||||
|
"hole_x": None,
|
||||||
|
"collision_penalty": 100,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='HoleReacher-v1',
|
||||||
|
entry_point='alr_envs.alr.classic_control:HoleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
"random_start": False,
|
||||||
|
"allow_self_collision": False,
|
||||||
|
"allow_wall_collision": False,
|
||||||
|
"hole_width": 0.25,
|
||||||
|
"hole_depth": 1,
|
||||||
|
"hole_x": None,
|
||||||
|
"collision_penalty": 100,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='HoleReacher-v2',
|
||||||
|
entry_point='alr_envs.alr.classic_control:HoleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
"random_start": False,
|
||||||
|
"allow_self_collision": False,
|
||||||
|
"allow_wall_collision": False,
|
||||||
|
"hole_width": 0.25,
|
||||||
|
"hole_depth": 1,
|
||||||
|
"hole_x": 2,
|
||||||
|
"collision_penalty": 100,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Mujoco
|
||||||
|
|
||||||
|
## Reacher
|
||||||
|
register(
|
||||||
|
id='ALRReacher-v0',
|
||||||
|
entry_point='alr_envs.alr.mujoco:ALRReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"steps_before_reward": 0,
|
||||||
|
"n_links": 5,
|
||||||
|
"balance": False,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='ALRReacherSparse-v0',
|
||||||
|
entry_point='alr_envs.alr.mujoco:ALRReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"steps_before_reward": 200,
|
||||||
|
"n_links": 5,
|
||||||
|
"balance": False,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='ALRReacherSparseBalanced-v0',
|
||||||
|
entry_point='alr_envs.alr.mujoco:ALRReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"steps_before_reward": 200,
|
||||||
|
"n_links": 5,
|
||||||
|
"balance": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='ALRLongReacher-v0',
|
||||||
|
entry_point='alr_envs.alr.mujoco:ALRReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"steps_before_reward": 0,
|
||||||
|
"n_links": 7,
|
||||||
|
"balance": False,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='ALRLongReacherSparse-v0',
|
||||||
|
entry_point='alr_envs.alr.mujoco:ALRReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"steps_before_reward": 200,
|
||||||
|
"n_links": 7,
|
||||||
|
"balance": False,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='ALRLongReacherSparseBalanced-v0',
|
||||||
|
entry_point='alr_envs.alr.mujoco:ALRReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"steps_before_reward": 200,
|
||||||
|
"n_links": 7,
|
||||||
|
"balance": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
## Balancing Reacher
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='Balancing-v0',
|
||||||
|
entry_point='alr_envs.alr.mujoco:BalancingEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Motion Primitive Environments
|
||||||
|
|
||||||
|
## Simple Reacher
|
||||||
|
_versions = ["SimpleReacher-v0", "SimpleReacher-v1", "LongSimpleReacher-v0", "LongSimpleReacher-v1"]
|
||||||
|
for _v in _versions:
|
||||||
|
_name = _v.split("-")
|
||||||
|
_env_id = f'{_name[0]}DMP-{_name[1]}'
|
||||||
|
register(
|
||||||
|
id=_env_id,
|
||||||
|
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
||||||
|
# max_episode_steps=1,
|
||||||
|
kwargs={
|
||||||
|
"name": f"alr_envs:{_v}",
|
||||||
|
"wrappers": [classic_control.simple_reacher.MPWrapper],
|
||||||
|
"mp_kwargs": {
|
||||||
|
"num_dof": 2 if "long" not in _v.lower() else 5,
|
||||||
|
"num_basis": 5,
|
||||||
|
"duration": 20,
|
||||||
|
"alpha_phase": 2,
|
||||||
|
"learn_goal": True,
|
||||||
|
"policy_type": "velocity",
|
||||||
|
"weights_scale": 50,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["DMP"].append(_env_id)
|
||||||
|
|
||||||
|
_env_id = f'{_name[0]}DetPMP-{_name[1]}'
|
||||||
|
register(
|
||||||
|
id=_env_id,
|
||||||
|
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||||
|
# max_episode_steps=1,
|
||||||
|
kwargs={
|
||||||
|
"name": f"alr_envs:{_v}",
|
||||||
|
"wrappers": [classic_control.simple_reacher.MPWrapper],
|
||||||
|
"mp_kwargs": {
|
||||||
|
"num_dof": 2 if "long" not in _v.lower() else 5,
|
||||||
|
"num_basis": 5,
|
||||||
|
"duration": 20,
|
||||||
|
"width": 0.025,
|
||||||
|
"policy_type": "velocity",
|
||||||
|
"weights_scale": 0.2,
|
||||||
|
"zero_start": True
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["DetPMP"].append(_env_id)
|
||||||
|
|
||||||
|
# Viapoint reacher
|
||||||
|
register(
|
||||||
|
id='ViaPointReacherDMP-v0',
|
||||||
|
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
||||||
|
# max_episode_steps=1,
|
||||||
|
kwargs={
|
||||||
|
"name": "alr_envs:ViaPointReacher-v0",
|
||||||
|
"wrappers": [classic_control.viapoint_reacher.MPWrapper],
|
||||||
|
"mp_kwargs": {
|
||||||
|
"num_dof": 5,
|
||||||
|
"num_basis": 5,
|
||||||
|
"duration": 2,
|
||||||
|
"learn_goal": True,
|
||||||
|
"alpha_phase": 2,
|
||||||
|
"policy_type": "velocity",
|
||||||
|
"weights_scale": 50,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["DMP"].append("ViaPointReacherDMP-v0")
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='ViaPointReacherDetPMP-v0',
|
||||||
|
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||||
|
# max_episode_steps=1,
|
||||||
|
kwargs={
|
||||||
|
"name": "alr_envs:ViaPointReacher-v0",
|
||||||
|
"wrappers": [classic_control.viapoint_reacher.MPWrapper],
|
||||||
|
"mp_kwargs": {
|
||||||
|
"num_dof": 5,
|
||||||
|
"num_basis": 5,
|
||||||
|
"duration": 2,
|
||||||
|
"width": 0.025,
|
||||||
|
"policy_type": "velocity",
|
||||||
|
"weights_scale": 0.2,
|
||||||
|
"zero_start": True
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["DetPMP"].append("ViaPointReacherDetPMP-v0")
|
||||||
|
|
||||||
|
## Hole Reacher
|
||||||
|
_versions = ["v0", "v1", "v2"]
|
||||||
|
for _v in _versions:
|
||||||
|
_env_id = f'HoleReacherDMP-{_v}'
|
||||||
|
register(
|
||||||
|
id=_env_id,
|
||||||
|
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env_helper',
|
||||||
|
# max_episode_steps=1,
|
||||||
|
kwargs={
|
||||||
|
"name": f"alr_envs:HoleReacher-{_v}",
|
||||||
|
"wrappers": [classic_control.hole_reacher.MPWrapper],
|
||||||
|
"mp_kwargs": {
|
||||||
|
"num_dof": 5,
|
||||||
|
"num_basis": 5,
|
||||||
|
"duration": 2,
|
||||||
|
"learn_goal": True,
|
||||||
|
"alpha_phase": 2,
|
||||||
|
"bandwidth_factor": 2,
|
||||||
|
"policy_type": "velocity",
|
||||||
|
"weights_scale": 50,
|
||||||
|
"goal_scale": 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["DMP"].append(_env_id)
|
||||||
|
|
||||||
|
_env_id = f'HoleReacherDetPMP-{_v}'
|
||||||
|
register(
|
||||||
|
id=_env_id,
|
||||||
|
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||||
|
kwargs={
|
||||||
|
"name": f"alr_envs:HoleReacher-{_v}",
|
||||||
|
"wrappers": [classic_control.hole_reacher.MPWrapper],
|
||||||
|
"mp_kwargs": {
|
||||||
|
"num_dof": 5,
|
||||||
|
"num_basis": 5,
|
||||||
|
"duration": 2,
|
||||||
|
"width": 0.025,
|
||||||
|
"policy_type": "velocity",
|
||||||
|
"weights_scale": 0.2,
|
||||||
|
"zero_start": True
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["DetPMP"].append(_env_id)
|
21
alr_envs/alr/classic_control/README.MD
Normal file
21
alr_envs/alr/classic_control/README.MD
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
### Classic Control
|
||||||
|
|
||||||
|
## Step-based Environments
|
||||||
|
|Name| Description|Horizon|Action Dimension|Observation Dimension
|
||||||
|
|---|---|---|---|---|
|
||||||
|
|`SimpleReacher-v0`| Simple reaching task (2 links) without any physics simulation. Provides no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions towards the end of the trajectory.| 200 | 2 | 9
|
||||||
|
|`LongSimpleReacher-v0`| Simple reaching task (5 links) without any physics simulation. Provides no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions towards the end of the trajectory.| 200 | 5 | 18
|
||||||
|
|`ViaPointReacher-v0`| Simple reaching task leveraging a via point, which supports self collision detection. Provides a reward only at 100 and 199 for reaching the viapoint and goal point, respectively.| 200 | 5 | 18
|
||||||
|
|`HoleReacher-v0`| 5 link reaching task where the end-effector needs to reach into a narrow hole without collding with itself or walls | 200 | 5 | 18
|
||||||
|
|
||||||
|
## MP Environments
|
||||||
|
|Name| Description|Horizon|Action Dimension|Context Dimension
|
||||||
|
|---|---|---|---|---|
|
||||||
|
|`ViaPointReacherDMP-v0`| A DMP provides a trajectory for the `ViaPointReacher-v0` task. | 200 | 25
|
||||||
|
|`HoleReacherFixedGoalDMP-v0`| A DMP provides a trajectory for the `HoleReacher-v0` task with a fixed goal attractor. | 200 | 25
|
||||||
|
|`HoleReacherDMP-v0`| A DMP provides a trajectory for the `HoleReacher-v0` task. The goal attractor needs to be learned. | 200 | 30
|
||||||
|
|`ALRBallInACupSimpleDMP-v0`| A DMP provides a trajectory for the `ALRBallInACupSimple-v0` task where only 3 joints are actuated. | 4000 | 15
|
||||||
|
|`ALRBallInACupDMP-v0`| A DMP provides a trajectory for the `ALRBallInACup-v0` task. | 4000 | 35
|
||||||
|
|`ALRBallInACupGoalDMP-v0`| A DMP provides a trajectory for the `ALRBallInACupGoal-v0` task. | 4000 | 35 | 3
|
||||||
|
|
||||||
|
[//]: |`HoleReacherDetPMP-v0`|
|
3
alr_envs/alr/classic_control/__init__.py
Normal file
3
alr_envs/alr/classic_control/__init__.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
from .hole_reacher.hole_reacher import HoleReacherEnv
|
||||||
|
from .simple_reacher.simple_reacher import SimpleReacherEnv
|
||||||
|
from .viapoint_reacher.viapoint_reacher import ViaPointReacherEnv
|
1
alr_envs/alr/classic_control/hole_reacher/__init__.py
Normal file
1
alr_envs/alr/classic_control/hole_reacher/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from .mp_wrapper import MPWrapper
|
@ -6,7 +6,7 @@ import numpy as np
|
|||||||
from gym.utils import seeding
|
from gym.utils import seeding
|
||||||
from matplotlib import patches
|
from matplotlib import patches
|
||||||
|
|
||||||
from alr_envs.classic_control.utils import check_self_collision
|
from alr_envs.alr.classic_control.utils import check_self_collision
|
||||||
|
|
||||||
|
|
||||||
class HoleReacherEnv(gym.Env):
|
class HoleReacherEnv(gym.Env):
|
||||||
@ -122,12 +122,26 @@ class HoleReacherEnv(gym.Env):
|
|||||||
return self._get_obs().copy()
|
return self._get_obs().copy()
|
||||||
|
|
||||||
def _generate_hole(self):
|
def _generate_hole(self):
|
||||||
self._tmp_x = self.np_random.uniform(1, 3.5, 1) if self.initial_x is None else np.copy(self.initial_x)
|
if self.initial_width is None:
|
||||||
self._tmp_width = self.np_random.uniform(0.15, 0.5, 1) if self.initial_width is None else np.copy(
|
width = self.np_random.uniform(0.15, 0.5)
|
||||||
self.initial_width)
|
else:
|
||||||
# TODO we do not want this right now.
|
width = np.copy(self.initial_width)
|
||||||
self._tmp_depth = self.np_random.uniform(1, 1, 1) if self.initial_depth is None else np.copy(
|
if self.initial_x is None:
|
||||||
self.initial_depth)
|
# sample whole on left or right side
|
||||||
|
direction = self.np_random.choice([-1, 1])
|
||||||
|
# Hole center needs to be half the width away from the arm to give a valid setting.
|
||||||
|
x = direction * self.np_random.uniform(width / 2, 3.5)
|
||||||
|
else:
|
||||||
|
x = np.copy(self.initial_x)
|
||||||
|
if self.initial_depth is None:
|
||||||
|
# TODO we do not want this right now.
|
||||||
|
depth = self.np_random.uniform(1, 1)
|
||||||
|
else:
|
||||||
|
depth = np.copy(self.initial_depth)
|
||||||
|
|
||||||
|
self._tmp_width = width
|
||||||
|
self._tmp_x = x
|
||||||
|
self._tmp_depth = depth
|
||||||
self._goal = np.hstack([self._tmp_x, -self._tmp_depth])
|
self._goal = np.hstack([self._tmp_x, -self._tmp_depth])
|
||||||
|
|
||||||
def _update_joints(self):
|
def _update_joints(self):
|
||||||
@ -202,7 +216,6 @@ class HoleReacherEnv(gym.Env):
|
|||||||
return np.squeeze(end_effector + self._joints[0, :])
|
return np.squeeze(end_effector + self._joints[0, :])
|
||||||
|
|
||||||
def _check_wall_collision(self, line_points):
|
def _check_wall_collision(self, line_points):
|
||||||
|
|
||||||
# all points that are before the hole in x
|
# all points that are before the hole in x
|
||||||
r, c = np.where(line_points[:, :, 0] < (self._tmp_x - self._tmp_width / 2))
|
r, c = np.where(line_points[:, :, 0] < (self._tmp_x - self._tmp_width / 2))
|
||||||
|
|
||||||
@ -250,7 +263,7 @@ class HoleReacherEnv(gym.Env):
|
|||||||
self.fig.show()
|
self.fig.show()
|
||||||
|
|
||||||
self.fig.gca().set_title(
|
self.fig.gca().set_title(
|
||||||
f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
f"Iteration: {self._steps}, distance: {np.linalg.norm(self.end_effector - self._goal) ** 2}")
|
||||||
|
|
||||||
if mode == "human":
|
if mode == "human":
|
||||||
|
|
@ -2,10 +2,10 @@ from typing import Tuple, Union
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
from mp_env_api import MPEnvWrapper
|
||||||
|
|
||||||
|
|
||||||
class HoleReacherMPWrapper(MPEnvWrapper):
|
class MPWrapper(MPEnvWrapper):
|
||||||
@property
|
@property
|
||||||
def active_obs(self):
|
def active_obs(self):
|
||||||
return np.hstack([
|
return np.hstack([
|
1
alr_envs/alr/classic_control/simple_reacher/__init__.py
Normal file
1
alr_envs/alr/classic_control/simple_reacher/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from .mp_wrapper import MPWrapper
|
@ -2,10 +2,10 @@ from typing import Tuple, Union
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
from mp_env_api import MPEnvWrapper
|
||||||
|
|
||||||
|
|
||||||
class SimpleReacherMPWrapper(MPEnvWrapper):
|
class MPWrapper(MPEnvWrapper):
|
||||||
@property
|
@property
|
||||||
def active_obs(self):
|
def active_obs(self):
|
||||||
return np.hstack([
|
return np.hstack([
|
@ -0,0 +1 @@
|
|||||||
|
from .mp_wrapper import MPWrapper
|
@ -2,10 +2,10 @@ from typing import Tuple, Union
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
from mp_env_api import MPEnvWrapper
|
||||||
|
|
||||||
|
|
||||||
class ViaPointReacherMPWrapper(MPEnvWrapper):
|
class MPWrapper(MPEnvWrapper):
|
||||||
@property
|
@property
|
||||||
def active_obs(self):
|
def active_obs(self):
|
||||||
return np.hstack([
|
return np.hstack([
|
@ -5,10 +5,10 @@ import matplotlib.pyplot as plt
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from gym.utils import seeding
|
from gym.utils import seeding
|
||||||
|
|
||||||
from alr_envs.classic_control.utils import check_self_collision
|
from alr_envs.alr.classic_control.utils import check_self_collision
|
||||||
|
|
||||||
|
|
||||||
class ViaPointReacher(gym.Env):
|
class ViaPointReacherEnv(gym.Env):
|
||||||
|
|
||||||
def __init__(self, n_links, random_start: bool = False, via_target: Union[None, Iterable] = None,
|
def __init__(self, n_links, random_start: bool = False, via_target: Union[None, Iterable] = None,
|
||||||
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
|
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
|
15
alr_envs/alr/mujoco/README.MD
Normal file
15
alr_envs/alr/mujoco/README.MD
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
# Custom Mujoco tasks
|
||||||
|
|
||||||
|
## Step-based Environments
|
||||||
|
|Name| Description|Horizon|Action Dimension|Observation Dimension
|
||||||
|
|---|---|---|---|---|
|
||||||
|
|`ALRReacher-v0`|Modified (5 links) Mujoco gym's `Reacher-v2` (2 links)| 200 | 5 | 21
|
||||||
|
|`ALRReacherSparse-v0`|Same as `ALRReacher-v0`, but the distance penalty is only provided in the last time step.| 200 | 5 | 21
|
||||||
|
|`ALRReacherSparseBalanced-v0`|Same as `ALRReacherSparse-v0`, but the end-effector has to remain upright.| 200 | 5 | 21
|
||||||
|
|`ALRLongReacher-v0`|Modified (7 links) Mujoco gym's `Reacher-v2` (2 links)| 200 | 7 | 27
|
||||||
|
|`ALRLongReacherSparse-v0`|Same as `ALRLongReacher-v0`, but the distance penalty is only provided in the last time step.| 200 | 7 | 27
|
||||||
|
|`ALRLongReacherSparseBalanced-v0`|Same as `ALRLongReacherSparse-v0`, but the end-effector has to remain upright.| 200 | 7 | 27
|
||||||
|
|`ALRBallInACupSimple-v0`| Ball-in-a-cup task where a robot needs to catch a ball attached to a cup at its end-effector. | 4000 | 3 | wip
|
||||||
|
|`ALRBallInACup-v0`| Ball-in-a-cup task where a robot needs to catch a ball attached to a cup at its end-effector | 4000 | 7 | wip
|
||||||
|
|`ALRBallInACupGoal-v0`| Similar to `ALRBallInACupSimple-v0` but the ball needs to be caught at a specified goal position | 4000 | 7 | wip
|
||||||
|
|
4
alr_envs/alr/mujoco/__init__.py
Normal file
4
alr_envs/alr/mujoco/__init__.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
from .reacher.alr_reacher import ALRReacherEnv
|
||||||
|
from .reacher.balancing import BalancingEnv
|
||||||
|
from .ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
|
||||||
|
from .ball_in_a_cup.biac_pd import ALRBallInACupPDEnv
|
@ -35,10 +35,10 @@ class ALRBallInACupEnv(MujocoEnv, utils.EzPickle):
|
|||||||
self.sim_time = 8 # seconds
|
self.sim_time = 8 # seconds
|
||||||
self.sim_steps = int(self.sim_time / self.dt)
|
self.sim_steps = int(self.sim_time / self.dt)
|
||||||
if reward_type == "no_context":
|
if reward_type == "no_context":
|
||||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_reward_simple import BallInACupReward
|
from alr_envs.alr.mujoco.ball_in_a_cup.ball_in_a_cup_reward_simple import BallInACupReward
|
||||||
reward_function = BallInACupReward
|
reward_function = BallInACupReward
|
||||||
elif reward_type == "contextual_goal":
|
elif reward_type == "contextual_goal":
|
||||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_reward import BallInACupReward
|
from alr_envs.alr.mujoco.ball_in_a_cup.ball_in_a_cup_reward import BallInACupReward
|
||||||
reward_function = BallInACupReward
|
reward_function = BallInACupReward
|
||||||
else:
|
else:
|
||||||
raise ValueError("Unknown reward type: {}".format(reward_type))
|
raise ValueError("Unknown reward type: {}".format(reward_type))
|
@ -2,7 +2,7 @@ from typing import Tuple, Union
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
from mp_env_api import MPEnvWrapper
|
||||||
|
|
||||||
|
|
||||||
class BallInACupMPWrapper(MPEnvWrapper):
|
class BallInACupMPWrapper(MPEnvWrapper):
|
@ -1,5 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from alr_envs.mujoco import alr_reward_fct
|
from alr_envs.alr.mujoco import alr_reward_fct
|
||||||
|
|
||||||
|
|
||||||
class BallInACupReward(alr_reward_fct.AlrReward):
|
class BallInACupReward(alr_reward_fct.AlrReward):
|
@ -1,5 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from alr_envs.mujoco import alr_reward_fct
|
from alr_envs.alr.mujoco import alr_reward_fct
|
||||||
|
|
||||||
|
|
||||||
class BallInACupReward(alr_reward_fct.AlrReward):
|
class BallInACupReward(alr_reward_fct.AlrReward):
|
@ -42,10 +42,10 @@ class ALRBallInACupPDEnv(mujoco_env.MujocoEnv, utils.EzPickle):
|
|||||||
self._dt = 0.02
|
self._dt = 0.02
|
||||||
self.ep_length = 4000 # based on 8 seconds with dt = 0.02 int(self.sim_time / self.dt)
|
self.ep_length = 4000 # based on 8 seconds with dt = 0.02 int(self.sim_time / self.dt)
|
||||||
if reward_type == "no_context":
|
if reward_type == "no_context":
|
||||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_reward_simple import BallInACupReward
|
from alr_envs.alr.mujoco.ball_in_a_cup.ball_in_a_cup_reward_simple import BallInACupReward
|
||||||
reward_function = BallInACupReward
|
reward_function = BallInACupReward
|
||||||
elif reward_type == "contextual_goal":
|
elif reward_type == "contextual_goal":
|
||||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup_reward import BallInACupReward
|
from alr_envs.alr.mujoco.ball_in_a_cup.ball_in_a_cup_reward import BallInACupReward
|
||||||
reward_function = BallInACupReward
|
reward_function = BallInACupReward
|
||||||
else:
|
else:
|
||||||
raise ValueError("Unknown reward type: {}".format(reward_type))
|
raise ValueError("Unknown reward type: {}".format(reward_type))
|
@ -1,4 +1,4 @@
|
|||||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
|
from alr_envs.alr.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
|
||||||
from mp_env_api.mp_wrappers.detpmp_wrapper import DetPMPWrapper
|
from mp_env_api.mp_wrappers.detpmp_wrapper import DetPMPWrapper
|
||||||
from mp_env_api.mp_wrappers.dmp_wrapper import DmpWrapper
|
from mp_env_api.mp_wrappers.dmp_wrapper import DmpWrapper
|
||||||
|
|
@ -37,7 +37,7 @@ class ALRBeerpongEnv(MujocoEnv, utils.EzPickle):
|
|||||||
self.sim_time = 8 # seconds
|
self.sim_time = 8 # seconds
|
||||||
self.sim_steps = int(self.sim_time / self.dt)
|
self.sim_steps = int(self.sim_time / self.dt)
|
||||||
if reward_function is None:
|
if reward_function is None:
|
||||||
from alr_envs.mujoco.beerpong.beerpong_reward import BeerpongReward
|
from alr_envs.alr.mujoco.beerpong.beerpong_reward import BeerpongReward
|
||||||
reward_function = BeerpongReward
|
reward_function = BeerpongReward
|
||||||
self.reward_function = reward_function(self.sim, self.sim_steps)
|
self.reward_function = reward_function(self.sim, self.sim_steps)
|
||||||
self.cup_robot_id = self.sim.model._site_name2id["cup_robot_final"]
|
self.cup_robot_id = self.sim.model._site_name2id["cup_robot_final"]
|
@ -1,5 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from alr_envs.mujoco import alr_reward_fct
|
from alr_envs.alr.mujoco import alr_reward_fct
|
||||||
|
|
||||||
|
|
||||||
class BeerpongReward(alr_reward_fct.AlrReward):
|
class BeerpongReward(alr_reward_fct.AlrReward):
|
@ -1,5 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from alr_envs.mujoco import alr_reward_fct
|
from alr_envs.alr.mujoco import alr_reward_fct
|
||||||
|
|
||||||
|
|
||||||
class BeerpongReward(alr_reward_fct.AlrReward):
|
class BeerpongReward(alr_reward_fct.AlrReward):
|
@ -38,7 +38,7 @@ class ALRBeerpongEnv(MujocoEnv, utils.EzPickle):
|
|||||||
self.sim_time = 8 # seconds
|
self.sim_time = 8 # seconds
|
||||||
self.sim_steps = int(self.sim_time / self.dt)
|
self.sim_steps = int(self.sim_time / self.dt)
|
||||||
if reward_function is None:
|
if reward_function is None:
|
||||||
from alr_envs.mujoco.beerpong.beerpong_reward_simple import BeerpongReward
|
from alr_envs.alr.mujoco.beerpong.beerpong_reward_simple import BeerpongReward
|
||||||
reward_function = BeerpongReward
|
reward_function = BeerpongReward
|
||||||
self.reward_function = reward_function(self.sim, self.sim_steps)
|
self.reward_function = reward_function(self.sim, self.sim_steps)
|
||||||
self.cup_robot_id = self.sim.model._site_name2id["cup_robot_final"]
|
self.cup_robot_id = self.sim.model._site_name2id["cup_robot_final"]
|
@ -1,6 +1,6 @@
|
|||||||
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||||
from alr_envs.mujoco.beerpong.beerpong import ALRBeerpongEnv
|
from alr_envs.alr.mujoco.beerpong.beerpong import ALRBeerpongEnv
|
||||||
from alr_envs.mujoco.beerpong.beerpong_simple import ALRBeerpongEnv as ALRBeerpongEnvSimple
|
from alr_envs.alr.mujoco.beerpong.beerpong_simple import ALRBeerpongEnv as ALRBeerpongEnvSimple
|
||||||
|
|
||||||
|
|
||||||
def make_contextual_env(rank, seed=0):
|
def make_contextual_env(rank, seed=0):
|
@ -2,9 +2,9 @@ import numpy as np
|
|||||||
from gym import spaces
|
from gym import spaces
|
||||||
from gym.envs.robotics import robot_env, utils
|
from gym.envs.robotics import robot_env, utils
|
||||||
# import xml.etree.ElementTree as ET
|
# import xml.etree.ElementTree as ET
|
||||||
from alr_envs.mujoco.gym_table_tennis.utils.rewards.hierarchical_reward import HierarchicalRewardTableTennis
|
from alr_envs.alr.mujoco.gym_table_tennis.utils.rewards.hierarchical_reward import HierarchicalRewardTableTennis
|
||||||
import glfw
|
import glfw
|
||||||
from alr_envs.mujoco.gym_table_tennis.utils.experiment import ball_initialize
|
from alr_envs.alr.mujoco.gym_table_tennis.utils.experiment import ball_initialize
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import os
|
import os
|
||||||
|
|
@ -1,6 +1,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from gym.utils import seeding
|
from gym.utils import seeding
|
||||||
from alr_envs.mujoco.gym_table_tennis.utils.util import read_yaml, read_json
|
from alr_envs.alr.mujoco.gym_table_tennis.utils.util import read_yaml, read_json
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user